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Figure 1: Our experiment to evaluate trust and cognitive load using the n-back task with an agent-assisted shape selection task

ABSTRACT
Human trust is a psycho-physiological state that is difficult to
measure, yet is becoming increasingly important for the design of
human-computer interactions. This paper explores if human trust
can be measured using physiological measures when interacting
with a computer interface, and how it correlates with cognitive load.
In this work, we present a pilot study in Virtual Reality (VR) that
uses a multi-sensory approach of Electroencephalography (EEG),
galvanic skin response (GSR), and Heart Rate Variability (HRV)
to measure trust with a virtual agent and explore the correlation
between trust and cognitive load. The goal of this study is twofold;
1) to determine the relationship between biosignals, or physiolog-
ical signals with trust and cognitive load, and 2) to introduce a
pilot study in VR based on cognitive load level to evaluate trust.
Even though we could not report any significant main effect or
interaction of cognitive load and trust from the physiological signal,
we found that in low cognitive load tasks, EEG alpha band power
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reflects trustworthiness on the agent. Moreover, cognitive load of
the user decreases when the agent is accurate regardless of task’s
cognitive load. This could be possible because of small sample size,
tasks not stressful enough to induce high cognitive load due to lab
study and comfortable environment or timestamp synchronisation
error due to fusing data from various physiological sensors with
different sample rate.
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1 INTRODUCTION
As data-driven artificial intelligence agents are becoming more com-
mon (e.g. Google Assistant, Amazon Alexa, and Tesla self-driving
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Table 1: List of Previous Work Regarding Sensing of Cognitive Load and Trust

Author Sensing Platform Cognitive Load Trust
Samson et al. [Samson and
Kostyszyn 2015]

- Trust game Raven P Matrix Test EIS Trust Scale

Hu et al. [Hu et al. 2016] EEG, GSR Desktop car driving
game

- Sensing result

Dey et al. [Dey et al. 2019] EEG VR shape selector N-back -
Daniel et al. [McDuff et al. 2016] HR, HRV Desktop ball control,

Berg card sorting
Dundee Stress -

Akash et al. [Akash et al. 2018] EEG, GSR Desktop car driving
game

- Sensing result

Dong et al. [Dong et al. 2015] EEG Desktop matrix game
with virtual agent

- Sensing result

Zhang et al. [Zhang et al. 2017] EEG, Eye gaze,
ECG, EMG,
SKT, RESP

VR driving Sensing result -

Khawaji et al. [Khawaji et al. 2015] GSR Desktop text chat Sensing result Sensing result
Hale et al. [Hale and Antonia 2016] Motion Virtual avatar

mimicry
- Sensing result

Salanitri et al. [Salanitri et al. 2016] - VR - Technology Trust Measure
Gerry et al. [Gerry et al. 2018] EEG VR shape selector N-back -
Our method EEG, GSR, HRV VR shape selector N-back System Trust Scale

cars), trust is becoming an increasingly important factor in human-
computer interaction (HCI). For example, if users are going to rely
on Google Assistant for weather forecasts, they need to be able
to trust the information that is given to them. Similarly, users of
self-driving cars need to be able to trust that the car will be able
to take them to their destination without incident. Similar issues
occur in virtual environments where user interaction with virtual
agents, objects, and even other human participants projected as a
virtual avatar rely heavily on our trust in both virtual and living
entities within the virtual space.

Although important, there is a lot of research that needs to be
conducted in trust and interactive technology. For starters, defining
trust is rather tricky, even in the field of psychology [Hernandez-
Ortega 2011]. Understanding factors that influence trust is also
important. Trust is affected by our personal experience interacting
with an entity as we evaluate its reliability over time. However,
other factors like how an agent sounds or looks can influence our
trust in that particular technology [Davis et al. 2009; McDonnell and
Breidt 2010; Qiu and Benbasat 2005]. Voice, intonation, appearance,
and motion also play an important role in influencing trust.

Researchers have been studying trust in human-computer in-
terfaces since the late 80s [Muir 1987], and previous research has
shown a strong correlation between cognitive load and trust [Sam-
son and Kostyszyn 2015]. Trust is often measured by using a set
of subjective surveys (e.g. the System Trust Scale (STS) [Jian et al.
2000]). However in recent years, researchers have begun to explore
psycho-physiological measures such as EEG or GSR and they were
able to develop a general trust sensor model with a mean accuracy
of 72% and a classifier based model with an accuracy of 79% [Akash
et al. 2018]. Compared to survey-based methods which are usually
only issued at the end of a task, physiological signal sensing can
be used as a tool for continuous and real-time evaluation, allowing

for a myriad of integrated solutions with technological devices and
real-time sensing.

In our research we are interested in the correlation between trust
and cognitive load, and are using VR to explore this. The hypothesis
is that agents can assist people performing a task and so reduce the
person’s cognitive load, but only if the agent is trusted. So we are
interested in how we can reliably measure trust, and if we can use
Virtual Reality to manipulate trust and cognitive load. We approach
the sensing of trust by measuring it using a multi-sensory approach
of EEG, GSR and HRV signals. By recording several physiological
signals for the experiment, we can establish which signals show
the best correlation with cognitive load and trust. This opens the
door for more potential future works, especially for use cases like
developing a machine learning model or different VR input modal-
ities that can be integrated into wearables like the HMD, haptic
glove and so on. We also perform an N-back Test to understand the
cognitive load level of each participant so that we can specifically
design a study environment in VR based on that.

We use a VR shape-selection task which has previously been
shown to increase cognitive load [Dey et al. 2019]. For our im-
plementation, we added a virtual agent giving instructions to the
participant to assist them in the task. We also added a countdown
timer to differentiate between the low and high cognitive load task.
Depending on the condition, the reliability of the agent is changed,
while the system measures the aforementioned physiological sig-
nals. From this, we then determine the correlation between each
of the signal types with cognitive load and trust. With this infor-
mation, we suggest several application scenarios in VR that can
benefit from this.

Compared to previous work, our research work makes the fol-
lowing novel contributions:
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(1) we explore the relationship between physiological signals
with trust and cognitive load,

(2) we develop an experimental design method in VR to evaluate
the relationship between trust and cognitive load based on
individual’s cognitive load levels.

2 RELATEDWORK
In this section, we summarize previous related work on cognitive
load and trust sensing methods, and how this is beneficial to VR as
a platform. We summarize our findings in Table 1.

2.1 Physiological Signal Sensing
Physiological signals, bio-potentials, or bio-signals are electrical
potential differences that exist in the human body that can be mea-
sured as electrical signals. These exists in the form of EEG, GSR,
HRV, heart rate (HR), electromyography (EMG), skin temperature
(SKT), respiration (RESP), etc. These signals often correspond to
some kind of physiological [Abouelenien et al. 2017], cognitive
[Augereau et al. 2018; Grimes et al. 2008; Rozado and Dunser 2015],
or emotional state [Szwoch 2015]. In human-computer interaction
(HCI), these signals are also exploited as a form of input and interac-
tion, such as using EEG to compare different devices or interaction
techniques in controlled virtual environment[Frey et al. 2016], mea-
sure cognitive workload experiences by the users interacting with
computers using functional near infrared spectroscopy (fNIRS) [Hir-
shfield et al. 2009], using EMG sensing by muscle activation as a
trigger [Pai 2016] or electrooculography (EOG) sensing for subtle
inputs [Lee et al. 2017]. Our work employs a multimodal approach,
using multiple physiological signals to measure cognitive load and
trust, as well as the relationship between them.

2.2 Trust
Trust is a psycho-physiological state that involves a firm belief about
another’s intention and one’s willingness to act by following their
words, expressions, decisions, or actions [Susan and Holmes 1991].
In both face-to-face and virtual (remote) human-human interaction,
trust is considered as an important factor to achieve successful out-
comes because of how it influences information exchange among
people, coordination, assistance and collaboration among individ-
uals [Jarvenpaa et al. 1998]. The more we trust a colleague, the
better the collaboration outcome. The definition of trust has varied
throughout various literature, with some claiming that it can be
categorized into persistence, technical competence and fiduciary
responsibility [Barber 1983], and others claiming that it can be
divided into dispositional, situational and learned [Hoff and Bashir
2015]. Another important consideration is the factors that influence
trust. Apart from experience, trust can be influenced by not just
the physicality of the entity, but also aspects like culture and gen-
der which are demographic factors [Akash et al. 2017]. In robotics,
trust towards robots is a combination of human-related (expertise,
competency, experience, demographic, comfort, etc.), robot-related
(reliability, predictability, failure rates, personality, etc.), and envi-
ronmental (membership, culture, communication, complexity, etc.)
factors [Hancock et al. 2011]. These factors can be physiologically

sensed, such as shown by Akash et al. [Akash et al. 2018] who used
EEG and GSR to measure trust using a desktop-based driving game.

2.3 Relationship between Cognitive Load and
Trust

Cognitive load is defined as the amount of working memory re-
quired for a task and has been well explored among researchers.
For example, Zhang et al. [Zhang et al. 2017] measured cognitive
load using a combination of physiological signals to assist autistic
individuals in driving. The author fused eye gaze, EEG, peripheral
physiology modality (ECG, EMG, RSP, SKT, PPG and GSR) and per-
formance modality into a feature set for classification and achieved
an 83% accuracy. Recent work has also used EEG to measure cog-
nitive load in VR environments. For example, Gerry et al. [Gerry
et al. 2018] and Dey et al. [Dey et al. 2019] measured cognitive load
using EEG to create a VR adaptive training system. Gerry et al.
showed clear activity in the alpha band (8 - 13Hz) whereas Dey et
al. found an increase in alpha synchronicity when the presented
task is harder.

Trust however, asmentioned previously, is a psycho-physiological
state. This means that it carries cognitive components because it
is the calculation of subjective probability given a specific situa-
tion, which explains its correlation with cognitive load [Rempel
et al. 1985; Samson and Kostyszyn 2015]. Among related works
that aimed to correlate cognitive load with trust are Samson et al.
[Samson and Kostyszyn 2015] and Khawaji et al. [Khawaji et al.
2015] who used a trust game and GSR sensing in a text chat en-
vironment respectively. However, neither work addressed this in
a VR environment nor how such work can be used to contribute
towards VR interface design.

In summary, researchers have explored the use of physiological
cues for measuring cognitive load and trust using various means.
We have summarized these findings on Table 1. To our knowledge,
there have been no previous experiments in VR to measure trust
with physiological signals. There has also been little previous work
that explores the relationship between cognitive load and trust.
However, the shape selector task in VR presents a useful baseline
for us to iterate from, while EEG and GSR has been used to measure
trust outside of VR. Our main research question is the following:
What kind of physiological signal features can provide a contin-
uous objective measure of trust and cognitive load in VR? Our
research will help address this question, especially for experiments
conducted in a VR environment. Finally, we would like to suggest
key applications and scenarios where both cognitive load and trust
can be leveraged to improve current VR experiences.

3 EXPERIMENTAL EVALUATION
For this study, we investigated the relationship between human
trust of a virtual assistant and the cognitive workload while per-
forming an agent-assisted task in VR. We gathered participants’
physiological information, specifically EEG, GSR and HRV as ob-
jective measures to establish the trust relationship along with their
behavioural data and traditional self-reporting questionnaires for
behavioural and subjective measures respectively.
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3.1 Prototype Design
In this section, we describe the training/task system and its compo-
nents along with a virtual voice agent used to assist the player to
complete the task. The experimental task chosen was target object
detection in an immersive VR environment. The VR application
included a voice agent that informs the user in which direction
(relative to the user) a target object is located. The voice-assisted
VR system has six components:

• OpenBCI EEG Electrode cap with Cyton-daisy module for 16-
channels support at 125Hz sampling rate [OpenBCI [n.d.]],

• OpenBCI GUI v4.1.5 for EEG data acquisition and streaming
to Unity [OpenBCI [n.d.]],

• Shimmer3 GSR+ Sensing device for sensing GSR and HRV
signals at 128Hz sampling rate,

• Java application for Shimmer data acquisition,
• Unity 3D game engine 2019.2.4 [Unity [n.d.]] for the n-back
and shape selector task, and

• First generation HTC Vive VR HMD [Vive [n.d.]] for the VR
environment display and to enable interactions.

Figure 2: Participant with OpenBCI EEG Cap, Shimmer
GSR+ Sensing Device, and HTC Vive HMD setup

3.1.1 Virtual Reality System. We used the HTC Vive virtual reality
Head Mounted Display(HMD) [Vive [n.d.]] to enable the participate
to perform tasks in virtual environment using Unity Virtual Reality
(VR) [Unity [n.d.]] application.

As a baseline cognitive workload test, we designed a delayed
digital recall task (n-back) for n = 1, 2, and 3 where incremental
values of n indicate increasing difficulty level. The n-back task is a
standard test which asks people to recall nth-number or character
n before the currently displayed one [Kirchner 1958]. We imple-
mented this in VRwhere a character was displayed for only a period

of 0.5 seconds. Then for the next 3 seconds, the participant has to
choose the matching or non-matching character by pressing right
controller’s trigger or left controller’s trigger signifying true or
false respectively to make their decision, before the next character
appears. We implemented a circular progress bar to inform the
participants about the time remaining to press the trigger. If they
didn’t make any choice before time was up, it was considered as
an incorrect response. We recorded all the events including new
round, trigger hit, times up, correct and incorrect choices, round
completion time, etc. (see figure 3). Previous research has shown
that EEG can be used to measure increasing cognitive load as the
n-back task become more difficult [Dey et al. 2019]. In this case for
each of n = 1, 2, and 3, we measured the EEG alpha power level
(8 - 13Hz), GSR and HRV to establish a baseline measure for each
user. This allows us to check if the main task reflects the correct
cognitive load level based on the physiological signals.

For the main task, we used the Shape Selector Task of Dey et
al. [Dey et al. 2019] and modified as per our system requirements.
In this task, blocks of different shapes (cube, sphere and pyramid)
and different colors (red, yellow, blue, green) were displayed in
virtual reality with a "target" block (displayed on a pink platform
for higher visibility). The objective for the user was to search for
the "target" block among the displayed blocks and press the trig-
ger of the controller when the participant had positioned a head
pointer over the target (see figure 4). Participants were told that
they should complete the task as fast as possible and that they had a
limited amount of time. They were advanced to the next level after
selecting the correct target shape object. At each level the number
of distracting objects and their movement increased, so the task
became more difficult.

We also introduced a virtual assistant agent who verbally informs
the player about the direction (left or right depending on the angle
between the players’ head orientation and relative target position)
of the target in order to help the player complete the task quickly
and efficiently. The virtual assistant is not visually represented, but
uses an audio cue of "Left" or "Right" to guide the user. In different
conditions the accuracy of the assistant is either 100 percent or 50
percent [Akash et al. 2017].

Figure 3: Virtual Environment Tasks: n-Back task

3.1.2 Physiological Sensing Devices. We measured participants’
EEG physiological response using a 16-channel OpenBCI EEG Cap
[OpenBCI [n.d.]] with gel-based electrodes. GSR and HRV physio-
logical signals were measured using the Shimmer Sensing Device
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Figure 4: Virtual Environment Tasks: Shape Selector Task

[Shimmer [n.d.]] while performing the n-back test and shape selec-
tion tasks. For EEG, we used the data from electrodes placed near
the pre-Frontal lobe responsible for decision making, and ability to
concentrate (FP1 and FP2), and the electrodes at the parietal and
occipital lobe [Dey et al. 2019] for measuring cognitive load, i.e. P3,
Pz, P4, O1 and O2. We placed the Shimmer Device GSR electrode on
the index and middle finger of the participants’ non-dominant hand
and HRV sensor electrode on the earlobes at the non-dominant
side.

3.2 Participants and Design
We conducted a 2x2 within-subjects pilot study with two dependent
variables - Cognitive Workload (CL) and Virtual Agent Accuracy
(Acc) as factors. A total of 13 participants (6 Female and 7 Male; Age
M: 26.61 , SD: 3.93) completed four conditions (LCL-LA, HCL-LA,
LCL-HA and HCL-HA) according to Table 2.

Table 2: Experimental Conditions

Cognitive Load: Low Cognitive Load: High
Accuracy: Low A: LCL-LA B: HCL-LA
Accuracy: High C: LCL-HA D: HCL-HA

The order of condition for each participant was arranged in a
Latin Square to eliminate potential ordering effects. To customize
the Shape Selector Task as per the experiment conditions, for low
cognitive load or easy tasks conditions (A and C) participants had 10
seconds to complete each level, whereas for high cognitive load or
difficult tasks conditions (B and D), participants had only 5 seconds
to complete each level. For low accuracy tasks (A and B), the agent’s
accuracy was 50 percent whereas for high accuracy tasks (C and
D), the agent’s accuracy was 100 percent. There were 20 levels to
complete for each condition, making the total number of trials per
participant 4 x 20 = 80 trials. From initial pilot testing, we found
that the given time of 5 seconds and 10 seconds for the easy and
difficult tasks respectively was sufficient yet challenging enough to
locate the correct shape. Moreover we only look at 100% and 50%
accuracy for the agent because it represents the opposite ends of
a reliable and unreliable agent [Akash et al. 2018]. 100% accuracy
indicates that the agent never lies, whereas 50% accuracy indicates
that it is simply a matter of luck; above 50% would increase the

chances of it being more accurate, and any lesser would make its
unreliability more predictable.

All of the participants were above 18 years of age, native Eng-
lish speakers or fluent in English, familiar with computers and
smartphones, and had some experience with virtual environments.
They also all had some experience with using virtual assistants like
Google Assistant, Apple Siri, Bixby, Amazon Alexa, etc. for tasks
such setting an alarm, searching for a nearby cafe, and setting up a
destination for car navigation.

3.2.1 Cognitive Load. Subjective cognitive load was measured us-
ing six questions based on the NASA Task Load Index questionnaire
[Hart 1986] considering mental demand, physical demand, tempo-
ral demand, performance, efforts and frustration while doing the
task. The average Task Load Index was calculated based on the
NASA TLX score calculation technique that suggests a higher cog-
nitive load for a higher TLX score. For physiological measures, we
use EEG, GSR and HRV physiological cues to measure cognitive
load. These sensors are worn by the participants throughout the
experiment.

3.2.2 Trust. We used twelve questions based on the System Trust
Scale (STS) developed by [Jian et al. 2000] to measure trust. These
questions considered system deception, underhanded behaviour,
trust, dependability, reliability, etc. factors. They are answered on a
5-point Likert-type scale (1= strongly disagree, 5= strongly agree).
Additionally, we use a behavioural measurement of trust. To achieve
this, we constantly log the direction of the head movement of
the participant relative to the target (left or right), along with the
direction informed by the agent (left or right as well) within the
same timestamp throughout the experiment.

3.3 Procedure
We arranged a room with minimum radio frequency interference
as there was a risk of extra noise in the physiological signals due to
such interference. After welcoming the participants, they were first
given a copy of the Consent Form (CF) and Participant Information
Sheet (PIS) to fill at the start of the session with an opportunity
to ask any questions about the study. Once they signed the CF,
they were asked to complete the pre-task questionnaire including
questions regarding demography, previous VR and Virtual assistant
experience. After that we asked them to wash and dry their hands,
then put the GSR and HRV sensors on their non-dominant hand.We
then setup the OpenBCI EEG cap with gel in the electrodes followed
by the Vive VR HMD, as shown in Figure 2. The entire setup had to
be carefully completed as the EEG cap electrodes could be displaced
from their position because of the HMD straps, resulting in faulty
EEG data.

After resting for 10 minutes, we explained the n-back task and
ran a practice session for participants to get familiarized with the
interface and the task. Next, participants were asked to complete a
delayed digital recall task (n-back) for n = 1, 2 and 3 for at least 15
correct answers. During the n-back test, EEG, GSR and HRV sensor
data was recorded. After the n-back test, participants were asked to
fill out the NASA TLX self-assessment questionnaire [Hart 1986].
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Table 3: System Trust Scale questions

Q# Statement
Q1 The system is deceptive
Q2 The system behaves in an underhanded manner
Q3 I am suspicious of the system’s intent, action, or

outputs
Q4 I am wary of the system
Q5 The system’s actions will have a harmful or

injurious outcome
Q6 I am confident in the system
Q7 The system provides security
Q8 The system has integrity
Q9 The system is dependable
Q10 The system is reliable
Q11 I can trust the system
Q12 I am familiar with the system

Post n-back task, we explained the Shape Selector task to the
participant followed by a practice round of the task. Next, partici-
pants completed the shape selector tasks (4 tasks as in Table 2) in
Latin-square order. In these tasks, the virtual assistant provided ad-
ditional audio information about the direction (left or right relative
to their head orientation) of the target object. As soon as the user
selected the correct block, they advanced to the next level where
the level number indicates the difficulty level and is decided based
on the number of displayed objects and task complexity. There were
a total of 20 levels per condition. Each condition took 10 minutes
and there was 5 minutes of rest between each condition.

After each task, subjects completed theNASATLX self-assessment
questionnaire and the System Trust Scale self-assessment question-
naire [Jian et al. 2000]. At the end of the experiment, we conducted
non-structured, open-ended interviews with the participants to
understand their perspective and experiences while performing the
tasks. Each session took approximately 60 minutes.

4 RESULTS
This section reports the experiment’s analysis and results. First we
report on System Trust Scale questionnaire, and then participants’
head movement direction as a behavioral measure of trust recorded
via head tracking. Next, we report on NASA TLX questionnaire
for all the conditions followed by EEG physiological analysis with
NASA TLX.

For GSR and PPG data collected through the Shimmer device, we
converted PPG into HRV using the algorithm provided in Shimmer
API. Later, we smoothed the GSR and HRV data using the moving
average filter with a window of 3 seconds and then normalized it.
For further GSR analysis, we used the Ledalab toolkit [Benedek
and Kaernbach 2010] and performed continuous decomposition
analysis to separate the tonic and phasic components. ‘We later used
Maximum Phasic component and Net phasic component as features
to be used from GSR. As for HRV, we used Kubios [Tarvainen
et al. 2014] to get mean Heart noRate, Low Frequency (LF), High
Frequency (HF) and LF/ HF ratio for each condition and these
features were used for further tests. Due to some technical problem

with the Shimmer Device, we have lost participant 2 and 10 data,
so excluded the results from them.

The rest of the data were manually inspected and cleaned (short
windows with high peaks and flat data were removed). We choose
to only take the EEG signals from the last 5 rounds of the shape-
selector task as it should better reflect the participant’s cognitive
load or trust level for that particular condition. We took the average
alpha band power (8 - 13Hz) from the selected seven electrodes and
used a median filter to further remove noise.

To calculate the final trust score, we first reversed the rating for
the negative valence questions i.e. Q1-5. For example, if someone
rated 2 for Q1, we changed it to 4 and so on. Then we calculated a
score from the System Trust Scale questionnaire by averaging the
ratings for all the questions. We performed the repeated measure
two-way ANOVA (α = 0.05) on the STS scores for all conditions to
determine participant’s trust perception on the Virtual agent system.
The test revealed that there was a significant main effect of accuracy
on participants (F(1,12) = 24.870, p < 0.001). There was no significant
main effect of cognitive load (F (1, 12) = 2.004, p = 0.185) and no
significant interaction between CL and Accuracy (F (1, 12) = 0.276,
p = 0.610). As the STS scores for all of the conditions were normally
distributed, we ran the Pearson Correlation test to determine the
relationship between the STS responses for tasks conditions A, B,
C, and D. There was a statistically significant positive correlation
between A - C ( rs(12) = 0.580, p=0.048) and a stronger and positive
correlation between B - C ( rs(12) = 0.737, p=0.006).

To understand user behaviour, we use head tracking to record
participants’ head movement and directional assistance provided
by virtual agent after every new round for all the tasks. We followed
the already discussed belief of trust [Susan and Holmes 1991] that if
the participant is willing to follow agent’s assistance i.e. directional
information, this can indicate that the participant is trusting the
agent. For the behavioral analysis, head movement in the direction
suggested by the agent was considered as trust and assigned 1 ,
whereas head movements opposite to the suggested direction was
no-trust and assigned as 0 for every frame. At the completion of
each condition, we averaged the assigned head movement data that
gave us a value between the scale of 0 to 1 and used it as a behavioral
trust parameter. A repeated measure two-way ANOVA (α = 0.05)
revealed that there was a significant main effect of Accuracy (F(1,12)
= 20.769, p = 0.001) on the averaged head movement data to search
for target objects to complete the tasks in these conditions. No
significant difference was found for Cognitive Load conditions
(F(1,12) = 0.322, p = 0.582) and interaction effect between Accuracy
and Cognitive Load (F(1,12) = 2.156, p = 0.170).

We calculated the unweighted average NASA TLX Score [Hart
1986] and performed a repeated measure two-way ANOVA test (α
= 0.05), finding that there was a significant main effect of cognitive
load conditions (F(1,12) = 8.091, p = 0.016 ) and interaction effect
of cognitive load and accuracy (F(1,12) = 10.832, p = 0.007 ) on
participants for perceived task load. There was no significant effect
of accuracy on the task load.

As the NASA TLX Score was reported normally distributed
through Shapiro Wilk test, for further investigation to determine
the relationship between task conditions A, B, C, and D for NASA
TLX score, we performed the Pearson product-moment correla-
tion. Results revealed that there is a strong, positive statistically
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Figure 5: Heatmap of the average EEG bandpower across the
7 selected electrodeswhile performing the tasks (Red to blue
color shows high to low active region)

significant correlation between A - B (rp(12) = 0.856, p < 0.001 ), A
- C (rp(12) = 0.918, p < 0.001 ), A - D (rp(12) = 0.891, p < 0.001 ), B
- C (rp(12) = 0.831, p=0.001 ), B - D (rp(12) = 0.919, p < 0.001 ), and
C - D (rp(12) = 0.936, p < 0.001) for perceived Task Load including
cognitive load.

Next, we analyzed the relationship of EEG alpha waves (8 - 13Hz)
on task conditions A, B, C, and D using Spearman’s rank-order
correlation. There was a strong, positive statistically significant
correlation between A - C (rs(12) = 0.706, p = 0.010 ). No significant
correlation was found between A - B (rs(12) = 0.266, p = 0.403 ), A
- D (rs(12) = 0.217, p = 0.499 ), B - C (rs(12) = 0.558, p = 0.059 ), B -
D (rs(12) = 0.448, p = 0.145 ), and C - D (rs(12) = 0.343, p = 0.276 )
conditions. This is also seen in Figure 5 where Condition A and C
were closest in terms of brain region of activation.

Through HRV analysis, we extracted LF, HF and LF/ HF ratio
as features. We used the LF/ HF ratio feature for our results and
performed the repeated two-way ANOVA test. The test reported
that there was no significant main effect of CL (F(1,11) = 0.669, p =
0.433 ) or Accuracy (F(1,11) = 0.061, p = 0.810 ) and no significant
interaction effect of CL and Accuracy (F(1,11) = 3.176, p = 0.105 ).
Then we conducted the Spearman’s rank-order correlation test on
it and found a strong, negative correlation between B and C (rs(11)
= -0.682, p = 0.021 ). No significant correlation was found between
A - B (rs(11) = -0.536, p = 0.089 ), A - C (rs(11) = 0.318, p = 0.340 ), A
- D (rs(11) = 0.309, p = 0.355 ), and B - D (rs(11) = 0.309, p = 0.355 ),
and C - D (rs(11) = 0.045, p = 0.894 ).

From GSR analysis following Akash et al. [Akash et al. 2018]
method, we used Net Phasic component for this research and per-
formed the repeated two-way ANOVA test. The test reported that
there was no significant main effect of CL (F(1,12) = 0.501, p = 0.495)
or Accuracy (F(1,12) = 3.406, p = 0.095 ) and no significant interac-
tion effect of CL and Accuracy. Then we conducted the Spearman’s

Figure 6: Plot of Average Net Phasic GSR for all conditions

rank-order correlation test and could not find any correlation be-
tween A - B (rs(11) = 0.245, p = 0.467 ), A - C (rs(11) = -0.304, p =
0.363 ) , A - D (rs(11) = 0.548, p = 0.081 ) , B - C (rs(11) = -0.012, p =
0.973 ) , and B - D (rs(11) = 0.007, p = 0.983 ) , and C - D (rs(11) =
0.327, p = 0.326 ). At the end, we plotted a bar graph (Figure: 6) with
the average net phasic GSR data of each conditions to observe the
GSR pattern as used by Khawaji et al. [Khawaji et al. 2015].

5 DISCUSSION
From the results of the experiment, we found that participants
had higher trust for high agent accuracy tasks as compared to the
low agent accuracy tasks as indicated by one participant saying "I
can trust the system". The System Trust Scale questionnaire results
indicate that the accuracy of the device had an effect on perceived
trust, with the data showing a significant effect of accuracy of the
agent on the answers to the questions. These results demonstrate
that participants were able to identify whether the agent is accurate
or inaccurate and whether they can trust the agent or not.

The accuracy of the device also had an effect on the participant’s
behaviour which aligns with what they perceived. Consequently,
they followed the agent’s direction when the agent was accurate
and less so when the advice was less accurate. This was also For
example, one participant said "This guy is lying to me! I can’t trust
him anymore. He is like my husband!" while performing the low
accuracy task.

The significant main effect of perceived trust (System Trust Scale)
on task conditions and behavioral trust (head movement relative to
the direction told by the Agent) on conditions and a strong, positive
correlation between conditions suggests that perceived trust has a
correlation with behavioral trust through our Shape Selector Task.
This means that a head movement task based on directions by a
virtual agent can be used to evaluate how much the user trusts the
agent. To allow users to experience the system’s performance and
calibrate trust, we only used the last 5 rounds of the shape selector
task to evaluate the behaviour. We believe that at the initial stage,
most users are primarily simply reacting to an order or request, as
opposed to actually trusting it. This is similar to a reaction to an
audio or visual stimuli because it simply grabs our attention, but
not out of trust.
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Regarding the n-Back test, we couldn’t find any relationship
between the baseline cognitive load and Shape Selector tasks cog-
nitive load. We suspect this is simply due to the task not being
difficult enough, or that participants simply guessed the answer,
resulting in incorrect alpha values. However, we were clearly able
to demonstrate through NASA TLX questionnaire analysis for all
the conditions that the tasks conditions with low cognitive load (A,
C) were significantly different than conditions with high cognitive
load (B, D) along with main effect of cognitive load & Accuracy
interaction. On further investigation, we found that for the low
accuracy conditions, the task load was increased when the partici-
pant performed low cognitive load task and then a high cognitive
load task (A and B) and vice versa. This was same for low to high
cognitive load with participant performing in high accuracy tasks
(C and D). This correlation suggests that our Shape Selector task
system was able to increase the perceived task load when perform-
ing low and high cognitive load tasks. We believe this correlation
can be improved by providing harder difficulty levels for the shape
selector. We will explore it in our further studies.

In our experiment, we could not find any significant main effect
or interaction effect of Cognitive Load and Accuracy on any of the
physiological signals (EEG, HRV, and GSR). However, we found sig-
nificant correlations between the conditions. As we already know
that alpha band power from EEG is inversely proportional to cogni-
tive load [Antonenko et al. 2010], our study suggested that during
the low cognitive load tasks (A and C), the average alpha band
power increased (indicating decrease in physiological cognitive
load) when the participant performed with a trustworthy agent
(high accuracy tasks, C and D). This means that with a task that
requires low cognitive load, the alpha band power measurement
reflects the trustworthiness of the agent. However, we have yet to
prove this for a more difficult task with increased cognitive load.

From previous work [McDuff et al. 2016], we know that with the
increase in cognitive load, the HRV’s LF-HF ratio also increases.
When we exposed the participants to a high cognitive load task
when the agent was inaccurate (condition B), if their LF-HF ratio is
high, their physiological cognitive load should be low for task with
low cognitive load and high agent accuracy (condition C) as we
have already determined that condition B is negatively correlated
with condition C. This suggests that cognitive load should decrease
when the agent is accurate regardless of the task’s cognitive load.
Whereas if the agent is inaccurate, task could result in high cognitive
load despite of task being easy (low cognitive load).

As mentioned by Khawaji et al. [Khawaji et al. 2015], if the par-
ticipant is asked to experience a low cognitive load task with an
accurate agent (when the participant’s trust is high), the average
GSR should be at lowest level indicating a low physiological cog-
nitive load. From our results (check Figure: 6), we observed that
the average Net Phasic GSR was lowest even when the participant
was performing a high cognitive load task with an accurate agent.
However, we could not report its statistical significance. This could
be possible because it was a lab study where the participants were
in a comfortable environment that made them feel less stressed.

One assumption we can make from these pilot results is that,
when the task load becomes higher, there is a possibility that the

alpha band power would reflect the cognitive load more than trust-
worthiness of the agent. However, further studies with larger sam-
ple size would be needed to verify this.

5.1 Proposed VR Scenarios
Based on our findings, we believe that VR technology as a whole
can benefit from increased understanding in trust and cognitive
load. Virtual agents, as demonstrated in this study, can be opti-
mized not just in terms of appearance, but in performance as well
to better earn the trust of the user. Trust in technology should
be carefully balanced; too much trust would result in negligence,
whereas too little of it could render the technology useless. Besides
virtual agents, understanding trust is useful for also designing the
virtual environment itself. VR aided medical simulation have been
researched and some are being used in practice [Oxford Medical
Simulation [n.d.]; Stansfield et al. 2000; Willaert et al. 2012]. While
most of these are focusing on cost reduction or realistic simula-
tion, these do not cast a light on trainee’s state. Observing trainee’s
physiological status and trust for the VR aid may realize adaptive
and effective teaching method to convey them how to handle a
situation. Advances in wireless communication technology and
light-weight wearable AR system enable the development of novel
remote collaboration systems. Although the technology is already
used in some of the industries [Google Glass [n.d.]; Posada et al.
2015], more research is needed in order to improve the remote
collaboration itself. Measuring workers trust and cognitive load
for the system could help users manage remote collaboration tasks,
for example in critical task environments such as factories, help in
finding bottlenecks in workflow and improve overall productivity.

6 LIMITATIONS
In this section, we describe some of the limitations faced during
the study. First, the OpenBCI EEG hardware has limited spatial and
temporal resolution. Other EEG sets may provide better signal to
noise ratio. However, since we are collecting EEG with GSR and
HRV simultaneously, we had to synchronise timestamps, which
may lead to artificial upsampling of the data since each sensor
has different sampling rates. The synchronizing was achieved by
having the Java application (streaming the GSR and HRV signals)
and OpenBCI GUI (streaming the EEG signals) both stream to Unity
which outputs the final signal file containing all sensor values in
the same timestamp, alongside other data such as head movement.

There were also some difficulties when using the HTVVive HMD
with the EEG cap, primarily because both devices are mounted on
the head. When the HMD is mounted on the EEG cap, it clamps
down on the prefrontal, parietal and occipital lobes (the tightening
mechanism squeezes the front and back section with a knob). Re-
gions that are not clamped down instead causes the electrodes to
lose contact with the scalp, particularly around the temporal and
frontal lobe. This results in poorer signals at that region, which
needs to be considered if those channels are involved in future
studies. Furthermore, the HMD needs to be tight enough, without
causing discomfort to the participant, otherwise small movements
will instead displace the HMD, inducing noise into the clamped
regions as well. Finally, the lack of significant effects in the n-back
task may be explained by some participants who claimed that they
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were partly guessing the answer rather than trying to make the
correct choice, leading to low cognitive load especially when n = 3.

7 CONCLUSION AND FUTUREWORKS
The primary objective of our evaluation study was to determine the
correlation between physiological signals with trust and cognitive
load while performing tasks with cognitive load and virtual agent
accuracy as dependent variables. To explore this we modified a
Shape Selector Task where a player searched for a target object in
an immersive virtual environment. We also added a virtual agent
who informed the user about the direction of the target object with
respect to the user’s head position with adjustable accuracy.

In terms of the trust, we found that most of the time there was a
significant main effect of agent’s accuracy on perceived trust with
a significant correlation with behavioral trust. We also determined
that there was a significant main effect of cognitive load on per-
ceived task load across the task conditions. On further analysis, a
significant positive correlation of cognitive load with accuracy of
the agent was reported. These results demonstrate how the experi-
mental design method in VR environment we have developed and
presented here can be used to evaluate trust of a virtual agent.

In our physiological data investigation, we found that there was
a strong and positive significant correlation of average alpha band
power at the pre-frontal, parietal and occipital lobe of the brain
with agent’s accuracy in a low cognitive load task. Furthermore,
there was a strong, negative significant correlation of LF-HF ratio
with the agent’s accuracy and cognitive load suggesting that if the
agents is accurate, then the physiological cognitive load state can be
decreased regardless of the task difficulty. The reason for this will
need to be investigated in future research, but we suspect that this
could simply be due to the alpha channels favoring cognitive load
over trustworthiness (higher correlation with cognitive load than
trust). Overall, we conclude that these results along with this pilot
study is one of the first approach towards exploring the correlation
between physiological signals with trust and cognitive load in VR.

For future works, we propose to either use another cognitive
load task like the Stroop Test [Gwizdka 2010], or possibly tweaking
the parameters of the n-back task and/or shape selector task by
further increasing the difficulty to obtain more significant results
in terms of cognitive load correlation. For example, we may set
the time limit to per condition instead of per task and observe the
differences. The conditions with low cognitive load can be assigned
a time limit of 10 minutes to complete all the tasks, whereas the
high cognitive load conditions require only 5 minutes to complete
all the tasks. We may also experiment with a wider range of agent
accuracy, such as being 75% accurate to establish the transition of
trust.

For the EEG signals, we only select the time window of the last
5 rounds of the shape selector task. However, other time windows
could possibly be experimented with, as well as signals from other
frequency bands, such that the beta, gamma, theta and delta band
[Jensen and Tesche 2002]. We would also like to combine eye-
tracking with head movement to explore if it can provide a better
and robust trust model instead of only head-movement.

We also plan to develop a machine learning model based on our
currently available dataset to train a model capable of predicting

both the trust and cognitive load level based on physiological signals
in real time. Finally, we would like to use this model to optimize
virtual entities, such as changing the appearance or voice of a virtual
avatar based on a user’s trust level.
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