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Fig. 1: CAEVR: integrating biosignals and context to adapt VR environment and agent feedback based on user emotions.

Abstract— There is little research on how Virtual Reality (VR) applications can identify and respond meaningfully to users’ emotional
changes. In this paper, we investigate the impact of Context-Aware Empathic VR (CAEVR) on the emotional and cognitive aspects
of user experience in VR. We developed a real-time emotion prediction model using electroencephalography (EEG), electrodermal
activity (EDA), and heart rate variability (HRV) and used this in personalized and generalized models for emotion recognition. We then
explored the application of this model in a context-aware empathic (CAE) virtual agent and an emotion-adaptive (EA) VR environment.
We found a significant increase in positive emotions, cognitive load, and empathy toward the CAE agent, suggesting the potential of
CAEVR environments to refine user-agent interactions. We identify lessons learned from this study and directions for future work.

Index Terms—empathy, VR, metaverse, physiology, emotion, context-aware, virtual agents

1 INTRODUCTION

This paper describes a Context-Aware Empathic Virtual Reality
(CAEVR) system that recognizes emotion from biosignal data to cre-
ate enhanced immersive experiences. The significance of empathy
in shaping human interactions, extending even to AI entities, is well-
documented [37, 61]. However, computers’ limited emotional respon-
siveness presents a challenge in replicating the depth of human empathy.
Empathic Computing (EmpComp) seeks to bridge this gap, leveraging
AI and biosensing to create more human-centric interactions [14, 65].

VR’s sensory-rich environment and virtual agents offer enhanced
user-agent connections, particularly relevant in sectors like healthcare
and education. This facilitates research in affective computing [55],
cognitive psychology [32], context-aware systems [58], and multi-
modal adaptation [70] in VR. A comprehensive exploration of how
combining real-time physiology-based emotion recognition, emotion-
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adaptive VR, and context-aware empathic responses could improve
users’ VR experience.

This motivated us to ask how context-aware empathic interactions
(CAEIxs) in VR could enhance the emotional and cognitive aspects of
the experience. We are interested in the research questions (RQs):

RQ1 How can physiological signals be used to predict emotions and
facilitate CAEIxs in VR environments?

RQ2 What are the effects of CAEIxs on elicited emotions, cognitive
load, and empathy towards a virtual agent in VR?

RQ3 How can the impact of CAEIxs on users’ emotional and cognitive
load during VR experiences be evaluated?

To answer these RQs, we first developed a four-class machine learn-
ing (ML) model to recognize emotions. This model used biosignals
such as electroencephalography (EEG, brainwaves), electrodermal ac-
tivity (EDA: skin sweat response), and photoplethysmography (PPG:
cardiac activity). Next, we used this model in the CAEVR system and
evaluated this system using a within-subject user study with CAEIxs
and Emotion-Adaptive VR as independent variables. The contributions
of this work are: 1. Empirical: We identified correlations between
valence ratings and Emotion-Adaptive (EA) and Context-Aware Empa-
thy (CAE) systems, informing how VR can adapt to user emotions; 2.
Methodological: We designed a system for real-time emotion recogni-
tion in VR using EEG, EDA, and HRV biosignals; 3. Methodological:
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We created a VR application demonstrating use of CAEIxs for en-
hanced user engagement and integrating empathic virtual agents into
this VR application; and 4. Technological: We developed an integrated
VR system that merges real-time emotion detection via EEG, EDA, and
HRV with CAEIxs, streamlining the incorporation of empathic virtual
agents to enhance user engagement.

2 RELATED WORK

This section overviews empathy’s theoretical and computational back-
ground, emotional responses, and empathy in virtual agents, emotion-
adaptive virtual reality, and context-aware virtual reality.

2.1 Theoretical and Computational Empathy

Defining empathy is still elusive [19]. Researchers such as Hoffman
[38], Davis [22], and Preston [69] have delved into multidimensional
approaches, considering both cognitive and affective components of
empathy. Preston introduced the Perception/Action Model (PAM)
of empathy, emphasizing shared emotional experiences, and further
explored the role of “cognitive empathy” in situations where subjects
imagine the object’s state [68]. Building on these principles, Rodrigues
et al. [73] developed a computational model that aligns with cognitive
theories of emotion, focusing on appraisals that assess the impact of
environmental events on individual emotions and incorporate advanced
cognitive processes such as the theory of mind and self-projection [61].

Two major empathic response strategies include emotion contagion
[35,36] and emotion regulation [29,84]. Emotion contagion strengthens
relationships and enhances shared experiences but can also be a source
of stress and burnout. On the other hand, emotion regulation helps
maintain emotional balance when empathizing with those experiencing
negative emotions [52].

Our system intricately integrates these concepts of empathic ap-
praisal and response along with the strategies of contagion and regula-
tion in our CAEVR system as described in section 3.

2.2 Emotional Responses and Empathy in Virtual Agents

In exploring the interplay between emotional responses and human-
agent interactions, a key focus has been on how agent tone and di-
alogue adaptations influence user experience. Affective states have
been expressed through diverse means, emphasizing agent nonverbal
and verbal cues [61]. The potential for misinterpretation of virtual
agents’ facial expressions was identified, emphasizing the need for
accurate emotional representation. Notably, verbal acknowledgments
of a user’s emotions outweighed the influence of facial expressions
alone in generating perceived empathy [23].

Voice tone, an intrinsic aspect of communication, was recognized
as a conveyor of diverse emotions and intentions. Emphasis on the
critical nature of nonverbal communication was evident, especially with
findings suggesting a dominant role of such cues, accounting for ap-
proximately 60-65% of interpretations in human communication [44].
The alignment of nonverbal vocal cues with user emotions is pivotal
for establishing empathy in voice-only communication [11]. Adjust-
ments in affective voice tone during sensitive conversations enhanced
perceived empathy [74] and during learning activity, reduced cognitive
load [50].

However, there is a gap in applying these principles in VR settings,
particularly in aligning TTS tones with specific emotional states. This
gap underlines the need for more research into how empathic virtual
agents can influence cognitive load. Cognitive Load Theory suggests
that an intuitive and user-friendly design of virtual agent interactions
could reduce cognitive load by streamlining communication and reduc-
ing unnecessary cognitive effort [13]. The “Empathic Companion" ex-
emplifies the use of real-time emotional feedback in virtual agents [67].
This suggests a promising direction for VR systems that adapt their
interactions based on real-time emotional states, potentially impacting
cognitive load. However, direct empirical evidence linking empathic,
context-aware VR systems to cognitive load reduction remains limited.

2.3 Emotion-Adaptive Virtual Reality
Integrating emotion-adaptiveness in VR, focusing on dynamic re-
sponses to user emotions as biofeedback, is a key area in enhancing
user experience. Using technologies to interpret emotions and adapt
the VR environment, facilitates awareness and voluntary modification
of bodily reactions. Studies like those by Bouchard et al. [7] have
demonstrated the effectiveness of visual and auditory biofeedback in
stress reduction using physiological measures such as salivary cortisol
and heart rate.

Badia et al. [40] employed physiological signals to adjust VR con-
tent. Their system used biofeedback signals to change visual elements
like images, and auditory elements like music, to represent different
emotions. However, their method did not recognize emotional states
or adapt to the environment in real-time. Liang et al. [49] further
developed this concept by introducing specific characters in a VR en-
vironment to influence emotions based on EEG features related to
relaxation and attentiveness. Yet, their study primarily focused on a
limited range of emotional states and did not integrate psychological
principles beyond biofeedback.

Research has also linked specific colors to emotional states [53], with
studies adapting VR environment colors based on real-time biofeed-
back for therapeutic purposes [42, 57]. For instance, green has been
associated with relaxation and calmness [45], and yellow with empathy
and joy [39]. A comprehensive review of affective visualization in VR
indicates that combining audio-visual cues like color and sound can
effectively represent users’ emotions [64]. These findings underpin the
hypothesis that changing environmental colors as biofeedback could
aid emotion regulation and improve emotional well-being.

2.4 Context-Aware Virtual Reality
Within ubiquitous computing, various context definitions have emerged
[1, 3, 9, 75, 76]. Dey et al.’s [26] state, “Context is any information
characterizing the situation of an entity, which might be a person, place,
or object relevant to the interaction between a user and an application.”
Given this, most VR systems are context-aware, adapting to player
movements and tracking interactions. While investigations into context-
aware systems cover AR [30], mobile [31], and IoT [62], VR remains
underexplored.

Lee et al. [48] introduced vr-UCAM, an architecture facilitating
context-aware VR with user-specific attributes to enhance realism in
a virtual heritage tour. Later, Dennemont et al. [24] devised a seman-
tic context-aware engine for enhancing 3D interaction within Virtual
Environments, employing concept graphs to inform decisions based
on historical events and new information. In a First Aid VR Train-
ing scenario, Yigitbas et al. [88] incorporated contextual information,
including user, platform, and environment. However, an extensive
exploration of incorporating emotional states for empathic interaction
within VR remains absent in these approaches.

2.5 Hypotheses
We’ve developed two main hypotheses based on the research questions
and reviewed the literature. The first, [H1], is that emotion-adaptive
(EA) and context-aware empathic (CAE) interactions will enhance emo-
tional well-being in VR by improving users’ emotional states [H1a],
their sense of presence [H1b], and raising their empathy levels [H1c].
The second hypothesis, [H2], suggests that these interactions will sig-
nificantly affect cognitive aspects in VR, influencing users’ cognitive
load [H2a], and flow state [H2b]. To evaluate these hypotheses, we
created the Context-Aware Empathic VR system described next.

3 CAEVR: CONTEXT-AWARE EMPATHIC VR
The CAEVR system consists of five modules: (1) ’Empathic Virtual Ex-
perience’ (EVE), which uses VR audio and visual cues to stimulate the
user’s psycho-physiological responses, (2) ’Data Collection’, enabling
the system to acquire biosignals from the user, (3) ’Empathic Appraisal’,
enabling recognition of the user’s emotion from their biosignals and
contextual cues, and (4) ’Empathic Response’, generate CAEIxs. In
this section, we discuss these modules in turn.
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Fig. 2: The CAEVR System

3.1 Empathic Virtual Experience

We focused on designing an experience that could induce flow, a mental
state characterized by complete immersion in an activity [18]. Flow
has been shown to positively impact well-being, such as feelings of
worth, mastery, achievement, and satisfaction [82]. To enable the flow
state, we designed the experience to be challenging but with achievable
tasks, to be immersive, and to provoke users with a sense of control
and agency, following the guidelines of [17].

Previously, empathic virtual agents have been explored extensively
in improving engagement, immersion, presence, and flow state [81].
Therefore, the VR experience was designed to naturally accommodate
virtual agents’ interactions that could exploit the predicted empathic
emotion from the empathic appraisal process.

We designed a VR application in the context of a virtual photography
competition, where users aim to take the best photographs of two
monuments on an island. This creates a clear goal and motivation for
users to explore the island, search for the monuments, and take photos.
Users had to search without a map over a 7-minute journey, and they
were encouraged to take as many photos as they wanted, but they could
only save eight pictures. Limiting the number of photos creates a sense
of urgency and encourages users to make careful decisions about what
to capture. In addition, they have a virtual companion, shown as an
orb-shaped character, which communicates in natural language and
provides on-demand assistance to help them with navigation, timing,
and photo-taking. This helps to increase engagement and interaction.

3.2 Data Collection

This module was designed to capture biosignals and user and activity-
related contextual information. We used the HTC Vive Pro VR HMD
and controllers, interfaced via SteamVR, to record user head movement
and activity performance at 90 Hz. This data collection included spe-
cific variables such as Estimated Time of Arrival (ETA) and the count of
photographs taken, allowing for contextual understanding as discussed
in section 3.3.2. To gain comprehensive insights into the physiological
and emotional responses of the users, the OpenBCI EEG Cap and the
Shimmer GSR+ sensor were used, streaming EEG, EDA, and PPG
signals at sampling frequencies of 125 Hz and 128 Hz, respectively.
The Biosignal Manager subsection describes their integration within
the CAEVR system.

3.3 Empathic Appraisal

This module understands the physiological and situational emotions
to facilitate empathetic interactions in VR. Three methods were imple-
mented: 1) BioEmoVR, a generalized emotion recognition model; 2)
Self-Projected Appraisal to assess context and user emotional state; and
3) Empathic Emotion Features, synthesizing contextual and emotional
information. These are described in more detail next.

3.3.1 BioEmoVR

BioEmoVR is a generalized emotion recognition model for VR de-
veloped using a dataset of EEG, EDA, and HRV biosignals collected
from 9 participants following the method mentioned in our previous
work [33]. The Dataset underwent rigorous pre-processing methods
and feature engineering to improve BioEmoVR’s performance.

Data Preprocessing: The raw data from EEG, PPG, and EDA
signals was cleaned using eyeballing, bandpass filtering, and moving
average filters. For EEG data, preprocessing involved noise reduction,
artifact removal, and bandpass filtering (1−50 Hz). EDA data under-
went preprocessing for noise elimination, outlier handling, bandpass
(0.05−5 Hz), and baseline correction. HRV data preprocessing encom-
passed moving average filter, RR interval extraction, outlier detection,
and bandpass filter (0.04−1 Hz). The data was then segmented into
30-second epochs with 50% overlap.

Feature Extraction: The Neurokit2 package [54] extracted 219
total features from EEG (194), HRV (18), and EDA (7), including time-
domain, frequency-domain, and statistical features. Normalization
techniques, such as z-score scaling, were applied to ensure consistent
data scaling. The SAM questionnaire responses were ground truth for
labeling emotional states into four classes.

Feature Scaling, Selection, and Balancing: Features were stan-
dardized to zero mean and unit variance using the standard scaler. The
Yeo-Johnson transformation normalized feature distribution. Redun-
dant features were reduced using backward feature elimination, and
class distribution was balanced with SMOTE.

Machine Learning Algorithms, Tuning, and Validation: The
gradient boosting classifier was trained to predict four emotional states:
‘happy’ for Positive Valence - Positive Arousal (PVPA), ‘stress’ for
Negative Valence - Positive Arousal (NVPA), ‘bored’ for Negative
Valence - Negative Arousal (NVNA), and ‘relaxed’ for Positive Valence
- Negative Arousal (PVNA). These classes were specifically chosen to
align with the emotional experiences anticipated in the VR photo-walk
experience designed for the study. A generalized modeling approach
was applied, with an 80/20 split for training and testing/ validation.
This model achieved a 10-fold cross-validation accuracy of 91.67%,
indicating high reliability and effectiveness in emotion classification.

3.3.2 Self-Projected Appraisal (SPA)

The Self-Projected Appraisal (SPA) technique is designed for VR sys-
tems to empathetically understand users by considering their perspec-
tives, needs, desires, and motivations. SPA’s key function is eliciting
situational emotions (SE) based on user activities and the context of the
VR environment. For instance, in our VR photography scenario, SPA
assesses activities like navigation, time spent, and photo count. For
example, a stress SE is triggered if a user does not reach a monument in
time. Conversely, a sad SE is triggered if not enough photos are taken.
If neither scenario applies, the user feels happiness. In navigation, the
SPA system aims to motivate users to explore as many monuments as
possible. This increases their chances of finding the best photo oppor-
tunity. The system gauges the remaining journey time (RJT), sets it
against the estimated time (ET) to monuments, and uses algorithm 1
(Appendix) to decide the SE. For photography, SPA encourages users
to capture multiple angles of each monument. This enhances their
chances of having at least one good photo. Based on the remaining
photos (RP) and monuments (ML) left to visit, algorithm 2 (Appendix)
determines the SE.

While the SPA method in this research is specialized for virtual
photography, the underlying principle of SPA — deriving situational
emotions based on user actions and context — has broader potential
applicability. For instance, in VR relaxation applications, SPA might
evaluate interactions with serene environments or completion of re-
laxation exercises to infer emotions such as calmness or stress. For
training scenarios, SPA’s focus could shift to assessing task comple-
tions and response times, helping to predict emotions like satisfaction
or frustration. Similarly, in metaverse applications, SPA could analyze
social interactions and achievements within the virtual world, providing
insights into emotions like happiness or disappointment.
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Similarly, for remote communication applications, SPA could eval-
uate the quality of virtual interactions, task collaboration, and overall
engagement within virtual meeting spaces. This would be key in in-
ferring teamwork-related emotions, such as feelings of collaboration
or isolation. In healthcare and rehabilitation VR, SPA could monitor
patient interactions with exercises or healthcare simulations, offering
insights into emotions tied to recovery, motivation, or discomfort during
rehabilitation processes. Lastly, in VR experiences focusing on cultural
and historical preservation, SPA could analyze user exploration patterns
and engagement with exhibits or virtual tours, predicting emotions such
as awe, nostalgia, or cultural appreciation. This wide-ranging applica-
bility of SPA demonstrates its potential as a versatile tool in enhancing
user experiences across various VR applications.

3.3.3 Empathic Emotion Features

The Empathic Emotion Features (EEFs) in our research are designed
to provide emotional and contextual information to adapt interactions
within a VR environment. These EEFs consist of five categories: Em-
pathic Emotion (EE), Comfort and Reassurance (CR), Motivation and
Support (MS), Positive Reinforcement and Encouragement (PRE), and
Urgency and Pressure (UP). Each category uniquely tailors the VR
experience to the user’s emotional and situational needs.

Empathic Emotions (EE): The EE category is central to the EEFs,
representing the user’s primary emotional state. For this study, the EE
category is selected based on the valence of physiological emotion (PE)
and situational emotion (SE), focusing on negative valence. Negative
emotions often indicate distress, boredom, discomfort, and dissatis-
faction. The system targets states where empathic responses are most
needed by focusing on these. This aligns with studies showing that
negative emotions in social interactions benefit from more empathic
responses [78]. While positive emotions are generally beneficial, they
don’t always necessitate an empathic response and can sometimes lead
to decreased empathic performance. This suggests the importance
of carefully interpreting positive emotions in empathic systems [25].
Based on this rationale, EE selection criteria were determined as 1)
When both PE and SE are Positive: EE is selected as positive, aligning
with the user’s overall positive emotional state; 2) When both PE and
SE are Negative: EE is negative, reflecting a compounded need for
empathic support; 3) When PE in Negative, and SE Positive: EE is neg-
ative, prioritizing physiological indicators of distress over situational
positivity; and 4) When PE Positive, and SE Negative: EE is negative,
focusing on situational challenges that require attention.

Comfort and Reassurance (CR): CR focuses on providing emo-
tional support and validation, which is important for alleviating distress
in users [16]. Enhancing the user experience in scenarios with preva-
lent negative emotions is crucial. Motivation and Support (MS):
MS encourages users to pursue their goals within the VR environment.
Empathic responses that include guidance and support can significantly
boost user motivation and engagement [59]. Positive Reinforcement
and Encouragement (PRE): PRE aims to bolster self-esteem and
confidence by acknowledging the user’s achievements and positive
qualities [80]. This category is important for maintaining user engage-
ment and satisfaction, particularly when users successfully overcome
challenges or reach milestones. Urgency and Pressure (UP): The
UP category is designed to create a sense of urgency and prompt im-
mediate action when necessary. This can effectively motivate quick
decision-making and responses in time-sensitive situations [83].

Implementation in Interaction Design: The EEF categories are
implemented as Boolean variables in the interaction design, activated
(’1’) or deactivated (’0’) based on the PE and SE combination. This
theoretical framework activates CR when physiological stress is de-
tected, indicating that the user might benefit from emotional comfort
and reassurance. However, it is not activated in certain stress situations
(like when PE is relaxed and SE is stressed) where the user’s relaxed
state suggests that they are managing the stress without needing addi-
tional comfort. MS is activated when there’s an opportunity for positive
engagement or goal achievement, even in negative emotions like stress
or boredom. PRE is generally activated in positive or mixed emotional
states to reinforce positive aspects. It’s used in scenarios where at least

one of the emotions (PE or SE) is positive, such as “Happy & Stress"
or “Relax & Stress", suggesting that the user is in a state where positive
reinforcement can be beneficial. The UP category is selectively acti-
vated to motivate quick decision-making or action in specific contexts,
and deactivated when PE and SE are stressed, as adding pressure in
high-stress situations could be counterproductive. Instead, the system
opts for less pressurized empathic responses in these scenarios, focus-
ing on managing and alleviating stress rather than exacerbating it. This
approach is informed by stress management principles, where reducing
additional pressure is crucial in intense stress conditions. This approach
ensures the VR experience dynamically aligns with the user’s emotional
and situational state. Table ?? illustrates these combinations and their
impact on EEF selection, demonstrating a responsive and contextually
aware empathic interaction system.

3.4 Empathic Response
This module provides guidelines about the selected interaction modal-
ity. This includes using various modalities to express affective states,
including colors and lighting, the virtual agent’s nonverbal cues, such
as tone, and verbal cues, such as dialogues. The rest of this section
discusses aspects of this in more detail.

3.4.1 Emotion-Adaptive Responses
Environmental colors were changed in response to the user’s emotional
state, to enhance understanding and regulation of the users’ emotions
[51]. Based on the insights on colour-emotion associations [5], we
assign PVPA (Happy) with Yellow, NVPA (Stress) with Red, NVNA
(Sad) with Blue, and PVNA (Relax) with Green. The goal was to
increase users’ awareness of their emotional states and empower them to
regulate their emotions to achieve a more positive emotional experience.

3.4.2 Empathic Tone
The VR empathic virtual agent needed to provide speech feedback
with an empathic tone. No previous research has indicated which text-
to-speech (TTS) tone style would appropriately correspond to which
emotional state. Addressing a research gap concerning the correlation
between TTS tone styles and distinct emotional states, a pilot study
was conducted with six participants using the Empathic Dialogues
dataset [71]. Participants evaluated the perceived empathy of the TTS
on a visual analogue scale. The results identified the most empathic
tones as ‘excited’ for PVPA (Happy), ‘empathetic’ for NVPA (Stress),
‘hopeful’ for NVNA (Sad), and ‘whispering’ for PVNA (Relaxed).

3.4.3 Context-Aware Empathic Assistance
An empathic dialogue-capable virtual agent was designed to deliver
emotionally aligned responses tailored to user-specific contexts. A
Belief-Desire-Intention (BDI) framework was integrated to achieve this
harmonization [8]. Within this framework, Beliefs were informed by
users’ emotions and situational contexts. Desires focused on dialogues
that resonate with users’ emotional states. Intentions outlined specific
actions, prompting users to explore more monuments or capture various
photographic perspectives.

A rule-based approach was employed, using predefined statements
to ensure the generated Empathic Dialogue aligned seamlessly with
the Empathic Emotion Features (EEFs) and the given context [15].
With the guidance of the EEFs presented in table ??, dialogues were
tailored for specific scenarios. For instance, when a user engages in a
photo-taking activity displaying happiness (EE = Happy), the system,
informed by the EEFs, might suggest an Empathic Dialogue such as
"Splendid shot!" (PRE=1), complemented by relevant Assistance like
"You have 7 photos left. Would you like to save this photo?". Refer
to the Empathic Dialogues List in the appendix for a comprehensive
overview of dialogues.

4 USER STUDY

4.1 Experimental Design
We conducted a 2x2 within-subject study to evaluate CAEVR, focusing
on Emotion-Adaptive (EA) and Context-Aware Empathic Interactions
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(CAEIxs). The conditions in Table 1 include NoEA, EA, NoCAE, and
CAE. In the EA setup, a color filter adjusted to the user’s real-time
physiological emotion was introduced. The virtual companion modified
its speech tone for CAE, employing empathic dialogues infused with
contextual information. In the NoEA-NoCAE baseline, the environ-
ment remained without a color filter, and the virtual companion used a
standard ‘customer service‘ tone without empathic dialogue.

Table 1: CAEVR: Experimental conditions

No CAE CAE
No EA A: NoEA-NoCAE C: NoEA-CAE

EA B: EA-NoCAE D: EA-CAE

To mitigate potential ordering effects, we randomized the condition
order for each participant using a Latin Square design. Our evaluation
of the independent variables combined subjective, physiological, and
behavioral measures, addressing emotions, presence, empathy, flow
state, and cognitive load.

Participants began with the Positive and Negative Affect Schedule
(PANAS) [86] to establish a balanced affective state. Subsequent mea-
sures included the Self-Assessment Manikin (SAM) [47] for emotional
perception, the IGroup Presence Questionnaire (IPQ) [77] for pres-
ence, and select dimensions from the Game Experience Questionnaire
(GEQ) [41] to evaluate in-game emotions and empathy. We deployed
the Flow Short State Questionnaire (FSSQ) [72] for flow state assess-
ment and the NASA-TLX [34] captured workload.

Our study collected EEG signals using a 16-channel OpenBCI EEG
Cap with electrode placement [43], targeting the frontal, prefrontal
cortex (FP1, FP2, F3, F4, F7, and F8), and occipital (O1 and O2) areas
in response to emotional stimuli [63] (see Figure 3). Additionally,
we recorded EDA and PPG signals using a Shimmer GSR+ sensor
positioned on the non-dominant wrist and electrodes on the index and
middle fingers, sampled at 128 Hz. We transmitted the physiological
data to the Unity application via the LSL protocol 1, using the OpenBCI
GUI configured with a 50Hz notch filter for the EEG cap, and a custom
Java application for the Shimmer.

SHIMMER
EDA, PPG

OpenBCI EEG

HTC VIVE HMD

SHIMMER
EDA, PPG

OpenBCI EEG

HTC VIVE HMD

Walk Forward

Call Assistant

Right Controller

Left Controller

Virtual Agent

Grab Camera

Take Picture

Fig. 3: System Setup on the participant

4.2 System Design
Our system is designed to create an immersive VR environment for a
photography contest scenario. We have developed it using Unity3D
version 2020.3.28f1 and Python 3.7, combining various components to

1 https://github.com/labstreaminglayer/LSL4Unity

deliver a seamless and engaging user experience while considering emo-
tional states, providing assistance, and managing data effectively. This
section provides an architectural overview (figure 10 in the appendix)
and describes the information flow between key components.

4.2.1 VR Environment
We created an immersive forest terrain on a computer powered by
an Intel Core i7 8700 CPU and an Nvidia RTX 2070 GPU. Within
this environment, we strategically placed eight monuments to serve as
subjects for photography, allocating two per journey. We designated
four starting points for the journeys. We set the VR experience on a
sunny day and enriched it with the ambient wind and bird sounds.

4.2.2 Activity
The VR application focuses on two main activities: Navigation and
Photo Capturing. Navigation uses an invisible node map to guide
users to the next monument using audible instructions, provided in
four primary directions, such as “Walk Straight", “Turn back and walk
straight", “Walk towards Left", and “Walk towards Right". When the
user requested directions, the system computed the direction concerning
the user’s head direction. For the photo-capturing activity, we integrated
a DSLR camera model. We established a secondary Unity ‘Main
Camera’ at the model’s lens to simulate a real photography experience,
with camera flash and click sound effects. Users could capture, display,
save, and discard photos through a developed photo management script.

Users navigate using head movements and teleportation, activated by
the Left controller’s touchpad and ‘Grab’ button. The camera becomes
available when the user holds the right controller’s ‘Grab’ button, al-
lowing users to direct it towards a point of interest and capture images
using the trigger. After capturing, a photo review window appears,
showing the status of the remaining photos and save options (see figure
4).

Fig. 4: Camera View (Left), photo reviewing in VR (Right)

4.2.3 Virtual Agent
In this study, we developed a virtual agent to be a companion to the user.
The agent, represented as a colorful floating orb, assists in navigation,
photo, and time management. It appears upon user requests and com-
municates through natural languages. The interaction with the agent is
facilitated through a nudge feature, allowing users to seek information
or assistance on tasks like inquiring about nearby monuments or man-
aging photos. The agent supports users in saving or discarding photos
and provides timely reminders at critical intervals, such as half-time
and the last minute, to ensure efficient time and photo management.

4.2.4 Biosignal Manager
The Biosignal Manager system collects and streams biosignals during
the VR experience. This system efficiently manages data flow by
leveraging the LabStreaming Layer (LSL) protocol and the LSL4Unity
API. It gathers diverse biosignal data, including a 16-channel EEG
stream from the OpenBCI, EDA, and PPG signals from the Shimmer3
sensor. The EEG was sampled at 125 Hz, while the EDA and PPG
were recorded at 128 Hz. We employed event markers within the Unity
environment to mitigate the challenge of asynchronous data collection,
including start, stop, call for assistance (CFA), and photo capture.
These markers served as reference points for data synchronization. The
event markers and the biosignal data were captured simultaneously and
streamed to the Python system through LSL. The Biosignal Manager
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system collected timestamps and real-time predicted emotional states
from AffectivelyVR. This contextual information is invaluable for
subsequent analyses. We stored this data in CSV files, facilitating
offline analysis and enhancing the comprehensiveness of our dataset.

4.2.5 Companion Manager
The Companion Manager (CM) is designed to oversee companion-
related interactions during navigation tasks. The system managed
contextual data collection, streaming, voice assistance, photo manage-
ment, and time management, activating only upon a user’s request
for assistance. When navigation assistance was requested, the CM
system calculated and relayed directions, journey durations, and time
estimations to reach monuments 1 and 2. The system also recorded
details regarding remaining photos and monuments when a photo was
captured. This contextual information was subsequently streamed to
the Companion Adaptor system using the LabStreaming Layer (LSL).

The Companion was shown as an orb-shaped avatar, appearing while
providing voice assistance. Speech functionality was enabled by the
Microsoft Azure Text-to-Speech (TTS) SDK package integrated into
Unity. The Speech Synthesis Markup Language (SSML) file format
was utilized to encompass voice name, style, and content, generating
speech as an audio file, played back using Unity’s AudioSource com-
ponent upon receiving confirmation of an SSML file update from the
Companion Adaptor system via LSL. Beyond responding to Call for As-
sistance (CFA), the Companion was activated during photo captures, at
the midway point, and in the final minute and ten seconds, maintaining
a photo count, reducing it as users saved photos.

A texture was applied to the User’s ‘MainCamera’, to change colors
and create the perception of wearing colored sunglasses. The texture’s
color was set based on the physiological emotion (PE) obtained from
the BioEmoVR (section 3.3.1).

4.3 Participants and Procedure
We recruited 15 participants (8 females, 7 males) aged between 22 and
47 (mean=31.1, SD=6.1). Each had normal or corrected vision and
previous VR experience. After screening for neurological and psycho-
logical issues, participants provided informed consent and completed a
pre-experiment questionnaire about demographics and VR experiences.
They then wore a Shimmer sensor on their non-dominant hand, the
OpenBCI EEG cap, and the HTC Vive Pro Eye VR HMD (figure 3).

We provided a brief practice session involving photography inter-
actions to familiarise them with the VR tasks. The main experimental
sequence began with a 60-second dark-room Rest phase, which served
as a “Baseline" for biosignal analysis. During this phase, the moderator
instructed participants to relax, clear their minds, and not think about
anything. This phase allowed their emotional state to return to a neutral
baseline. This was followed by a 7-minute Condition phase, where
they photographed VR monuments. A virtual companion greeted them
with: "Welcome to the Virtual Reality photography contest! I will be
your companion throughout this seven-minute journey. I will help you
navigate to the monuments, and don’t forget to have fun!". Post-trial,
participants filled out the SAM scale, IPQ, GEQ, FSSQ, and NASA-
TLX questionnaires. This sequence was repeated for all conditions,
with a 5-minute break provided after the second trial.

4.4 Analysis
This section outlines the methodology to analyze the subjective, physi-
ological, and behavioral measures acquired during the experiment. The
scales employed include the Self-Assessment Manikin (SAM), IGroup
Presence Questionnaire (IPQ), Game Experience Questionnaire (GEQ),
NASA-TLX, and Flow Short State Questionnaire (FSSQ). We coded
SAM responses on a 9-point scale, with 1 and 9 indicating the lowest
and highest levels, respectively. For the IPQ, we used a 7-point Likert
scale from -3 to +3, reverse-coded negatively worded items, and derived
factor scores as Spatial Presence, Involvement, and Experienced Real-
ism. GEQ responses were recorded on a 5-point Likert scale. Factor
scores, like Positive Affect and Empathy, were averaged from pertinent
items. The NASA-TLX data, computed using the Task Load Index
(TLX) methodology and the FSSQ scale, was measured on a 7-point

Likert scale ranging from 1 to 7. To compute the factor scores for each
participant, we averaged the scores of the relevant items for ‘Absorption
by Activity’ and ‘Performance Fluency’ flow characteristics.

The study examined the impact of motion artifacts on EEG, EDA,
and PPG data. All data traces were inspected, and segments with pro-
nounced and irregular fluctuations indicative of motion artifacts were
excluded. Noise peaks in EEG signals were removed, and a bandpass
filter between 1-50 Hz was applied. The EDA signals were processed
by discarding noise peaks, and a bandpass filter spanning 0.05-5 Hz
was utilized. A 10-second moving average filter was used on the EDA
data to retain phasic components, then downsampled to 4 Hz. For PPG
signals, a filter from 0.04-1 Hz was applied, baseline removal was con-
ducted, and a moving average filter was employed for data smoothing.
Utilizing the Neurokit2 python package [54], we extracted EEG, EDA,
and HRV features. The EEG features accounted for emotional and
cognitive aspects, including Frontal Alpha Asymmetry (FAA) [21],
various theta and beta powers in select regions [6]. The engagement
was quantified by the ratio of combined beta power to the combined
sum of alpha and theta power [66].

5 RESULTS

This section presents our analysis of the experiment data, focusing on
emotion-adaptive (EA) and context-aware empathic (CAE) interactions
in three parts; (1) findings from the subjective questionnaires, (2) re-
sults from physiological measurements, illuminating the participants’
emotional and cognitive processes, and (3) behavioral measurements,
to evaluate the companion’s effectiveness. We only report on significant
results. Overall, the key findings are:

1. A notable correlation was observed between subjective valence
ratings and the EA and CAE constructs, with TLX ratings show-
casing significant effects from CAE.

2. Physiological data, including EDA and HRV metrics like RMSSD,
SDNN, and the LF/HF ratio, demonstrated pronounced influences
from both EA and CAEIxs.

3. EEG analysis indicated significant effects of CAE on FA-Theta
and FP-Beta, while F-Theta exhibited interaction between EA
and CAE.

5.1 Subjective Measures

We recorded 60 post-trial subjective responses from four trials with 15
participants each. We used the SAM for valence and arousal, the IPQ
for presence, the GEQ for affect and empathy, the FSSQ for flow, and
the NASA-TLX for task load. We tested the normality of subjective
ratings across conditions, namely A (NoEA-NoCAE), B (EA-NoCAE),
C (NoEA-CAE), and D (EA-CAE) using the Shapiro-Wilk test [79].
Parametric scores were analyzed with a Two-way Repeated Measure
ANOVA, followed by an Estimated Means Margin post hoc analysis
with Tukey HSD correction. In contrast, non-parametric scores were
analyzed using the Aligned Ranked Transform (ART) [87].

SAM: To analyze the effects of EA, CAE, and their interaction
(EA*CAE) on SAM Valence and Arousal ratings across all condi-
tions, we conducted an ART test. This indicated significant main
effects of EA (F(1,42)=10.18, p < 0.001) and CAE (F(1,42)=27.44,
p < 0.001) on SAM Valence, as well as a significant interaction effect
between EA and CAE (F(1,42)=11.36, p=0.001). Post-hoc pairwise
comparisons indicated significant differences between Condition A and
C (t(1,42)=−5.31, p < 0.0001), Condition A and B (t(1,42)=−3.85,
p=0.002), and Condition A and D (t(1,42)=−5.01, p=0.0001). Re-
garding SAM arousal, ART showed no significance.

IPQ: The IGroup Presence (IPQ) questionnaire assessed subjective
ratings for overall presence (OP), spatial presence (SP), involvement
(INV), and experienced realism (REAL). The Shapiro-Wilk test in-
dicated normal distribution for ratings on OP, SP, INV, and REAL
(p > 0.05). General presence (GP) did not show a normal distribution
and was evaluated using the ART. Both the Two-way Repeated Measure
ANOVA and ART revealed no significant main or interaction effects of
EA and CAE on the respective dimensions.
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GEQ:The effects of Emotion-Adaptive (EA) and Context-Aware
Emotion (CAE) on the GEQ scores, specifically Empathy, Positive
Affect, and Negative Affect, were investigated. Based on a Shapiro-
Wilk normality test, these scores followed a non-parametric distribution
(p < 0.05). The ART test was used for the evaluation.

For Empathy, a significant main effect was observed for CAE
(F(1,42)=8.99, p=0.004). Post-hoc comparisons demonstrated sig-
nificant differences between conditions A and D (t(1,42)=−3.86,
p=0.002) as well as conditions B and D (t(1,42)=−2.73, p=0.04).
Regarding Positive Affect and Negative Affect, there were also no
significant differences between conditions.
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Fig. 6: Empathy, Positive and Negative Affect in GEQ Scale

FSSQ:The Shapiro-Wilk test confirmed that the factors of Absorp-
tion by Activity, Performance Fluency, and the overall Flow State Score
from the FSSQ followed a normal distribution (p > 0.05). A Two-Way
Repeated Measures ANOVA was employed to evaluate the effects of
Emotion-Adaptive (EA), Context-Aware Emotion (CAE), and their
interaction. For Activity Absorption, there were no significant effects
for EA or CAE.

NASA-TLX: Based on the NASA-TLX Task Load Index (TLI), the
Shapiro-Wilk normality test showed that the data was non-parametric
(p < 0.05). Using Aligned Rank Transformation (ART), we evalu-
ated the effects of Emotion-Adaptive (EA) and context-aware Emo-
tion (CAE) and their combined influence. The effect of EA was non-
significant, but a significant influence of CAE was found (F(1,42)=7.9,
p=0.01). However, post-hoc comparisons between the conditions re-
vealed no differences in cognitive load.

5.2 Physiological Measures
This section presents the findings from the Electrodermal Activity
(EDA) features, Heart Rate Variability (HRV) metrics, and EEG fea-
tures. We began our analysis with the Shapiro-Wilk test to verify data
normality. If the data adhered to a normal distribution (p > 0.5), we
proceeded with the Two-way Repeated Measures ANOVA. For non-
normally distributed data (p < 0.5), the Aligned Rank Transformation

(ART) was employed for statistical evaluation.
EDA: For the normalized EDA Peak Number (EDA-PN), the

Shapiro-Wilk test confirmed its parametric nature (p > 0.05). Subse-
quently, the Two-way repeated measures ANOVA revealed a significant
interaction effect between EA and CAE (F(1,42)=19.66, p < 0.0001).
Tukey HSD post-hoc EMM comparison detected significant differ-
ences between conditions C-D (t(1,42)=−3.424, p=0.007) and B-D
(t(1,42)=−3.26, p=0.01).

For the EDA Peak Amplitude (EDA-PA), the Shapiro-Wilk test
indicated a non-parametric distribution (p < 0.05). The subsequent
ART test showed a significant main effect of EA (F(1,42)=10.19,
p=0.002). Post-hoc pairwise comparisons highlighted significant dif-
ferences between conditions A-B (t(1,42)=−2.83, p=0.034) and A-D
(t(1,42)=−3.73, p=0.003).
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Fig. 7: Box plot of EDA peak number and amplitude features

HRV: RMSSD data was reported as non-parametric (p < 0.05).
The ART test revealed both EA (F(1,42)=6.39, p=0.01) and CAE
(F(1,42)=7.69, p=0.008) had a significant main effect on it. Post-hoc
pairwise comparison revealed a significant difference between condi-
tions A-B (t(1,42)=−2.84, p=0.03), B-C (t(1,42)=−3.56, p=0.005),
and B-D (t(1,42)=−2.9, p=0.03). SDNN data was reported as non-
parametric (p < 0.05). The ART test found both EA (F(1,42)=11.35,
p=0.001) and CAE (F(1,42)=8.21, p=0.006) had a significant main
effect. Post-hoc pairwise comparison found a significant difference be-
tween conditions A-B (t(1,42)=3.09, p=0.01), and B-C (t(1,42)=−4.1,
p=0.001).

Low Frequency (LF) data were normally distributed (p < 0.05).
A two-way repeated measures ANOVA reported no significant main
effect of EA and CAE. No significant interaction between EA and
CAE was also reported. High Frequency (HF) data were normally
distributed (p < 0.05). Two-way repeated measures ANOVA reported
no significant main effect of EA and CAE. No significant interaction
between EA and CAE was also reported.

The ratio of LF and HF (LF/HF) powers were normally dis-
tributed (p < 0.05). A two-way repeated measures ANOVA reported
a significant main effect of EA (F(1,42)=16.38, p=< 0.001) and
CAE (F(1,42)=9.97, p=0.002). Post-hoc EMM comparison with
Tukey HSD revealed a significant difference between conditions A-
B (t(1,42)=3.5, p=0.005), B-C (t(1,42)=−4.48, p=0.0001), and B-D
(t(1,42)=−2.78, p=0.03).

EEG: A Shapiro-Wilk test on the EEG data reported FAA, FA-Theta,
PF-Alpha, FP-Beta, OP-Alpha, Alpha/Thera Ratio (ATR), F-Theta,
FCP-Alpha, and Engagement as non-parametric, whereas M-Theta was
parametric. For the FAA data, neither EA (F(1,42)=0.93, p=0.33)
nor CAE (F(1,42)=1.62, p=0.20) showed significant effects. The Nor-
malized FAA mean (SD) for Conditions A, B, C, and D were 0.50
(0.28), 0.46 (0.32), 0.52 (0.28), and 0.29 (0.22), respectively. An
ART test reported a significant main effect of CAE (F(1,42)=11.11,
p=0.001) on FA-Theta, but not for EA (F(1,42)=1.98, p=0.16). The
FA-Theta mean (SD) for Conditions A, B, C, and D were 0.02 (0.02),
0.03 (0.04), 0.08 (0.09), and 0.14 (0.16), respectively. There was a
non-significant main effect of EA (F(1,42)=1.79, p=0.18) and CAE
(F(1,42)=0.54, p=0.46) on PF-Alpha. However, a significant interac-
tion effect was found between EA-CAE (F(1,42)=6.22, p=0.01). The
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Fig. 8: HRV RMSSD, SDNN, HF, LF and LF/HF features

PF-Alpha mean (SD) for Conditions A, B, C, and D were 0.16 (0.27),
0.11 (0.24), 0.13 (0.27), and 0.20 (0.29), respectively. An ART test
reported a significant main effect of CAE (F(1,42)=8.19, p=0.006)
on FP-Beta, whereas EA showed no main effect and no interaction
effect between EA and CAE. An ART test reported a significant main
effect of CAE (F(1,42)=19.38, p < 0.001) on F-Theta, whereas EA
(F(1,42)=2.46, p=0.12) showed no main effect. EA and CAE had a
significant interaction effect (F(1,42)=8.51, p=0.005). Post-hoc pair-
wise comparison revealed a significant difference between conditions
A-D (t(1,42)=3.33, p=0.009), B-C (t(1,42)=2.74, p=0.04), and B-D
(t(1,42)=4.92, p=0.0001). Other measures, such as M-Theta, OP-
Alpha, ATR, FCP-Alpha, and Engagement, showed no significant main
or interaction effects for either EA or CAE.
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6 DISCUSSION

6.1 Enhancing Emotional Well-Being
The study aimed to investigate the first hypothesis that providing
emotion-adaptive (EA) and context-aware empathic (CAE) interactions
improves emotional well-being in VR (H1). We analyzed self-reported
subjective responses and bio-responses to understand the emotional
experience, sense of presence, and empathy towards virtual agents
contributing to emotional well-being.

6.1.1 Emotional Experience
The study found that EA and CAE interventions positively influenced
subjective emotional valence both individually and when they were
combined, as demonstrated by significantly higher SAM Valence rat-
ings in conditions involving these interventions (B, C, and D) compared
to the control condition (A), which did not involve any interventions.
However, the study did not report any significant effects of EA and
CAE interventions on SAM Arousal or the GEQ positive and negative

affect ratings, which aligns with previous research reporting mixed
findings regarding the impact of environmental factors and empathic
virtual agents on arousal and affect [10].

Nevertheless, the study found that EA and CAE interventions sig-
nificantly impacted several physiological measures associated with
emotional arousal and regulation, such as RMSSD, SDNN, LF/HF ra-
tio, EDA-PA, and FA-Theta, which aligns with previous literature [2,4].
The significant main effect of EA on EDA Peak Amplitude (EDA-PA)
suggests that manipulating environmental color alone can increase emo-
tional arousal. This supports the idea that integrating environmental
color manipulation and CAE virtual agents independently and, in some
cases, interactively influenced can lead to more positive emotional
experiences and better regulate emotions.

The significant main effect of CAE on FA-Theta data suggests that
the context-aware empathic virtual agent increased emotional arousal
when combined with environmental color manipulation (Condition D).
Similarly, the significant main effect of CAE on FP-Beta data indicates
that the empathic virtual agent increased emotional arousal during
attention and emotional processing tasks.

Overall, the study provides preliminary evidence supporting the po-
tential benefits of integrating environmental color manipulation and
empathic virtual agents in virtual reality environments to enhance emo-
tional experiences, supporting Hypothesis H1(a).

6.1.2 Sense of Presence
The study uncovered no significant impact of EA or CAE on subjective
presence measures, such as overall presence, spatial presence, involve-
ment, and realism. The non-significant results observed in this study re-
garding Emotion-Adaptation (EA) and Context-Aware Empathy (CAE)
interventions on presence measures align with previous research [20]
that has reported mixed or inconclusive findings concerning the impact
of such interventions on presence in highly immersive and engaging
VR environments.

Future research should consider introducing environmental quality
and engagement level variations to assess whether these factors interact
with or modulate EA and CAE’s effects. While all conditions exhibited
increased presence, the absence of significance contradicts hypothesis
H1(b), which states that EA and CAEIxs will improve the sense of
presence in VR. To better understand these effects, future studies should
examine the temporal dynamics of EA and CAE and more carefully
account for the potential interference of high-quality environments and
engaging activities when evaluating their impact on presence.

6.1.3 Empathic Connection
The GEQ analysis revealed a significant effect of context-aware em-
pathic (CAE) interventions on players’ perceived empathy towards the
virtual agent. At the same time, emotion adaptation (EA) did not signif-
icantly impact affective responses. Furthermore, post hoc comparisons
indicated that combining EA and CAE interventions (Condition D)
elicited a stronger empathic response towards game characters than the
control and EA alone (Conditions A and B). This finding aligns with
Tielman et al.’s research [85], which explored the influence of verbal
and textual presentation on adherence and user engagement, demon-
strating the potential benefits of empathic virtual agents in therapeutic
settings.

Overall, The study findings partially supported the first hypothesis,
H1, that manipulating environmental color and using context-aware
empathic interactions independently or, in some cases, interactively can
enhance users’ emotional experience and strengthen empathy with the
virtual agent. By demonstrating the effectiveness of CAE interventions
in promoting empathic responses and considering the non-significant
impact on presence, this research emphasizes the need for a deeper
understanding of how different strategies can be employed in designing
empathic virtual agents.

6.2 Cognitive Load and Flow
We aimed to address H2 by investigating the effect of EA and CAE
on cognitive load and flow state using subjective, physiological, and
behavioral measures.
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6.2.1 Cognitive Load

The present study emphasizes that context-aware empathic (CAE) in-
terventions notably decrease cognitive load, but emotion-adaptive (EA)
interventions exhibit an insignificant effect. In support of this, the
research uncovered a significant influence on cognitive load when CAE
was present, as evidenced by the perceived Task Load Index (NASA-
TLX) and EEG Frontal Theta Activity. This finding is congruent with
previous research that suggests a positive correlation between theta
power and self-reported cognitive load [12]. Additionally, the results
align with Lampen et al.’s [46] study, positing that context-aware as-
sistance could effectively impact cognitive load by providing real-time
personalized and relevant information. However, in this study, the mean
TLX rating and F-Theta correlated to higher cognitive load, indicating
increased cognitive demand in the tasks when the agent was context-
aware empathic. There could be a possibility that the CAE responses
using only audio cues were used as extra information that could lead to
cognitive overload [28], whereas allocating responses via two channels
(visual and auditory) could help avoid this overload [56].

The study partially validates hypothesis H2(a) that integrating
emotion-adaptive (EA) and context-aware empathic (CAE) interven-
tions can impact cognitive load. Despite identifying a significant pri-
mary effect of CAE interventions on cognitive load, the impact of EA
interventions was statistically insignificant. Future research should
delve deeper into the potential advantages of merging these interven-
tions within more intricate and emotionally demanding tasks, refine the
design of EA interventions, and explore an embodied virtual agent to
better cater to users’ emotional requirements.

6.2.2 Flow State

The findings indicated that either EA or CAE interventions did not
significantly influence the self-reported flow state measures of Activ-
ity Absorption, Performance Fluency, or the overall Flow State Score.
This aligns with prior research [27], where no significant self-reported
flow states were observed when controlled for mindfulness and atten-
tion. Such results might be attributed to individual differences and the
complex nature of the flow state.

The study’s results partially supported hypothesis H2(b), suggesting
combining EA and CAE interventions would enhance the flow state.
Despite the absence of significant effects on self-reported flow state
measures, the substantial impact on HRV-SDNN indicates that the inte-
gration of EA and CAE may still influence the physiological aspects
of flow [60]. Further research is warranted to comprehend the intri-
cate interplay between emotion-adaptive and context-aware empathic
interventions and the multifaceted nature of the flow state.

7 SUMMARY OF CONTRIBUTIONS

The study aimed to understand the impact of context-aware empathic
(CAE) interactions on the user experience, with a focus on emotional
and cognitive aspects of user experience within emotion-adaptive (EA)
virtual reality (VR) environments. To investigate this, we asked three
questions and sum the answers here:

RQ1: How can physiological signals be used to predict emotions and
facilitate CAEIxs in VR environments?
A1: The BioEmoVR system, described in the Empathic Appraisal
Module, utilized physiological signals to predict emotions and enable
CAEIxs in VR settings. The research created a generalized emotion
model with an accuracy of up to 91.67% using EEG, EDA, and HRV
biosignals. The CAEVR system was designed to predict emotional
states every 30 seconds, incorporating empathic virtual agents in VR
tasks such as navigation and time management.
RQ2: What are the effects of CAEIxs on elicited emotions, cognitive
load and empathy towards a virtual agent in VR?
A2: The results revealed that context-aware empathic (CAE) virtual
agents, which adapt based on emotional and contextual signals, can
enrich user experiences. Enhanced positive emotions and increased em-
pathy towards the agent and environment independently or interactively

were reported by participants. Additionally, combining CAE agents
can influence cognitive burdens on users but boost empathy.
RQ3: How can the impact of CAEIxs on users’ emotional and cognitive
load during VR experiences be evaluated?
A3: The study suggests a multi-faceted approach to evaluating user
experiences, merging subjective, physiological, and behavioral metrics.
Tools such as the Self-Assessment Manikin (SAM) questionnaire, EDA
features, HRV, and EEG metrics captured users’ emotional responses.
No definitive measure was pinpointed for assessing the presence, but the
empathy component of the Game Experience Questionnaire’s (GEQ)
Social Presence module assessed users’ psychological empathy. Met-
rics such as the NASA-TLX questionnaire, EDA measurements, and
EEG responses gauged cognitive load. The HRV SDNN metric pro-
vided insights into flow states in CAE-based EA VR environments.

8 LIMITATIONS AND FUTURE WORK

The effectiveness of the interventions faced several limitations that
warrant future attention. Initially, an environment that was visually
appealing and realistic might have drawn user attention, as evidenced
by the significant pleasurable perceived emotion score. This might have
contributed to an immersive experience, potentially overshadowing the
effects of EA or CAE. Furthermore, participants’ high engagement lev-
els might have intensified the sense of presence, obscuring the impacts
of EA or CAE. To counter these challenges, temporal analysis will
examine the effects of EA and CAE during distinct VR experience peri-
ods like onboarding, the first half, and the latter half. Future studies will
vary the environmental quality and engagement levels to ascertain if
these factors influence the effects of EA and CAE interventions on pres-
ence. Employing more refined tools such as pupil and neuroscientific
fNIRS measures will be considered to broaden understanding.

Another notable limitation was the study’s small sample size, possi-
bly hindering the generalizability of results. It has been proposed that
subsequent research encompass a broader participant range of 30-50
individuals. Despite the interventions, participants did not mark signifi-
cant emotional intensity shifts during the study. The empathic virtual
agent’s design, represented by a non-expressive floating orb, might not
have been ideally suited to trigger notable emotional changes. The rule-
based appraisal and response mechanism could also have contributed by
offering unwarranted or irrelevant support. Upcoming studies will eval-
uate other virtual agent features and LLM-based intelligent agents that
might amplify arousal effects noticeable in physiological responses.
Additionally, the motion required in the VR experience could have
produced motion artifacts, particularly in EEG readings, influencing
real-time emotion identification. In response, cutting-edge artifact re-
moval algorithms will be utilized, and system performance will be
assessed. Lastly, future endeavors will evaluate the CAEVR system’s
impact, aiming to ascertain the influence of emotional states, flow state,
presence, empathy, cognitive load, and trust in virtual agents and to
derive an impact score to enhance the CAEVR system’s efficacy.

9 CONCLUSION

In exploring Context-Aware Empathic VR (CAEVR), this study has
paved the way for enhancing user experiences by adapting to real-time
emotional feedback. Through integrating EEG, EDA, and HRV biosig-
nals, a novel system was designed to recognize emotions in real-time
within VR environments. Employing the CAEVR application show-
cased the potential for heightened user engagement, significantly en-
hancing positive emotions and empathy toward empathic virtual agents.
Furthermore, the research highlighted the transformative capability of
VR applications when underpinned by contextual and emotional intelli-
gence. As the digital landscape continuously evolves, the findings of
this study illuminate the profound promise that empathic interactions
hold for the future of immersive VR experiences. Future work should
refine these interactions and expand the application areas, ensuring a
holistic and emotionally attuned VR environment.
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