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of physiological signals, d) Various states of cognitive load.

Abstract—In collaborative settings where multiple individuals are tasked with completing a shared goal, understanding one’s partner’s
emotional state could be crucial for achieving a successful outcome. This is particularly relevant in remote collaboration contexts,
where physical distance can impede understanding, empathy, and mutual comprehension between partners. In this paper, we
demonstrate representing emotional patterns from physiological data in a shared Virtual Reality (VR) environment, and explore how it
impacted communication styles. A user study investigated the potential effects of this emotional representation in fostering empathetic
communication during remote collaboration. The study’s findings revealed that although there was minimal variance in the workload
associated with observing physiological cues, participants generally preferred monitoring their partner’s attentional state. However,
with the assembly task chosen, most participants only directed a minimal proportion of their attention toward the physiological cues
displayed by their partner, and were frequently uncertain of how to interpret and use the information obtained. We also discuss
limitations of the research and opportunities for future work.

1 INTRODUCTION

The widespread adoption of video conferencing due to the pandemic
has increased remote work, study, and leisure activities. While web
and desktop-based tools for remote collaboration are widely avail-
able, these platforms have limitations when attempting to convey three-
dimensional spatial concepts or natural nonverbal communication cues.
This can be especially challenging in fields such as technical training,
where it can be difficult to understand complex machinery or equip-
ment demonstrated through a real-time video. One potential solution is
through using Virtual Reality (VR), which allows for a more interactive
and immersive spatial representation of people and their surroundings,
thereby providing a richer and more informative communication expe-
rience than traditional two-dimensional video feeds.

With the advent of low-cost VR devices, the number of collaborative
VR platforms providing rich interactive experiences has increased.

*e-mail: prasanth@ahlab.org
†e-mail: suranga@ahlab.org
‡e-mail: mark.billinghurst@auckland.ac.nz

Applications such as Spatial1, MetaHorizon Worlds2, and Mozilla
Hubs3, among others, offer standalone platforms for collaboration in
VR. A number of user studies have shown how VR platforms such as
these can be useful for training, education, and other applications.

VR-mediated experiences can help people interact with one another
in scenarios where participants are not located in the same physical
space [46]. This typically take the form of several participants joining
each other in an entirely virtual environment from separate physical
spaces by entering the same VR world. However, current commercial
collaborative VR systems don’t support sharing of physiological cues,
which could provide more insight into the user’s emotional state and
enable people to connect in new ways. This was one of the main
motivations behind our research.

In this paper, we are interested in how sharing physiological cues
in shared VR could improve the collaborative experience. Previous
research has shown a positive impact from physiological cues in video
conferencing [53]. Users can infer their emotional state and cognitive
load from the physiological signals they see from their partner.

We have developed a VR collaboration system that enables sharing
of physiological cues, such as heart rate, cognitive load, and attentional
state, among collaborators, thereby facilitating a more comprehensive
mutual understanding. Using this system, we conducted an empirical

1https://spatial.io/
2https://www.oculus.com/facebook-horizon/
3https://hubs.mozilla.com/
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study to test the hypothesis that visualizing physiological cues would
significantly impact collaborators’ empathy levels. Our approach uses
the ability of VR technology to convey natural nonverbal communi-
cation cues and physiological signals, thereby providing a more im-
mersive and informative experience compared to traditional remote
collaboration platforms.

The main novelty of this research is the sharing of physiological cues
for remote collaboration in VR. To our knowledge, there has been very
little research regarding how these cues can be conveyed, how it applies
to a realistic collaborative task, and its effects on the collaboration. In
short, our contributions are the following:

1. We developed a prototype collaborative VR system that shared
physiological cues between users

2. We conducted an empirical evaluation of various physiological
signal visualization methods (heart rate, cognitive load and atten-
tion) in a real-time collaborative task in VR.

3. We evaluated these methods using a realistic assembly task of a
virtual engine where users need to collaborate across twelve tasks
with three difficulty levels.

2 RELATED WORK

Our research is based on earlier Social VR work, physiological cues
sharing, and its visualization. This section reviews key works from
each area and highlights the research gap we are exploring.

2.1 Social VR
Early studies focused on understanding user interactions in Social VR
environments. Collaboration is one of the most compelling use cases
for interactions in immersive VR. This is mainly due to the ability of
VR systems to track and represent the user naturally, similar to a face-
to-face experience. Some early academic VR systems demonstrated
the potential of collaboration in VR [7, 34]. One of the key lessons
learned from this was the importance of representing the user and how
the virtual avatar chosen could greatly impact the ease of collaboration.
For example, a study by Churchill et al. [5] highlighted that the choice
of virtual avatars significantly influenced the ease of collaboration in
VR environments. Collaboration felt more natural and intuitive when
users were represented by humanoid avatars with realistic features
and movements. On the other hand, when users were represented by
abstract or non-human avatars, such as floating spheres, collaboration
became more challenging.

As a result, many researchers have studied the representation of
the user as an avatar and the social response they generate. Studies
have demonstrated that a higher level of embodiment, where users
feel their avatar’s movements and sensations as if they were their own,
leads to increased empathy and social behavior [13, 15, 16, 40, 60].
This embodiment can be achieved through real-time motion tracking,
haptic feedback, and realistic rendering of body movements [49, 59].
Zibrek et al [65] found that realistic characters are favored in virtual
reality, overcoming Uncanny Valley issues. Other studies [25, 35,
56, 61] have shown that the link between avatar representation and
immersion in virtual environments is complex, and better visual quality
of avatars doesn’t necessarily lead to higher perceived realism. This
suggests that factors beyond the visual quality of avatars influence
the immersive experience. Based on these findings, we designed our
system drawing inspiration from Sebastian et al. [14]’s approach, which
uses simpler avatars for social interactions. This approach implies that
simplicity in avatar design can be effective for social engagement in
virtual environments.

Researchers have explored various communication modalities in
Social VR, aiming to create more immersive and natural ways for
users to interact. These include voice communication, spatial audio
[63], gesture recognition [36], and haptic feedback [58]. Studies have
examined the effectiveness of different communication modalities in
enhancing social presence, user engagement, and the overall quality of
social interactions in virtual environments [39].

Studies have explored collaborative tasks, such as problem-solving
or creative activities, and investigated the effectiveness of Social VR
in fostering cooperation and teamwork [3]. Moreover, research has
examined shared experiences in Social VR, exploring how the sense
of co-presence and shared activities contribute to social bonding and
forming social relationships [54].

As an indication of the popularity of Social VR, there are over
100 systems listed in the XR collaboration directory that works with
a minimum of two collaborators [1]. However, despite significant
progress in Social VR, several research gaps remain. For instance,
understanding how to effectively integrate physiological cue sharing
and visualization techniques within Social VR environments is an
ongoing challenge.

2.2 Effect of sharing physiological cues
Thompson [55] denotes empathy as a sense of similarity between
the feelings that an individual experiences and those expressed by
others. There a number of few systems that enable the collaborators to
share physiological cues [4, 12, 17, 41]. Most of these systems share
heart rates to enhance various collaboration experiences. For example,
Dey et al. [10] explored the effects of sharing manipulated heart rate
feedback in collaborative VR. The study involved creating two types of
virtual environments, active and passive, each with different levels of
interaction. The study found that the manipulated heart rate feedback
had a significant impact on the perception of scariness and nervousness.
Increased heart rate feedback was perceived as higher valance (positive
emotion) and lower arousal, and resulted in a decrease in the real
heart rate. By analyzing the influence of varied heart rate feedback on
social presence, emotional response, physical heart rate, and overall
experience, this research underscores the significance of integrating
physiological data in enhancing collaborative interactions and outcomes.
Similar studies also examined manipulating the heart rate information
to enhance social presence [9, 11].

Researchers have also looked into using Galvanic skin response
(GSR) as an index of cognitive load [47], and various physiological
cues like EEG have been used to enable adaptive training systems using
VR technologies [8]. Our system combines these physiological cues to
study the effect of sharing them in a collaborative setting.

By tracking and analyzing physiological signals such as heart rate,
skin conductance, and body movements, it is possible to infer a user’s
emotional state in VR [22, 23]. This mapping can enhance the immer-
sive experience, enable personalized content, and potentially improve
mental health interventions. However, one of the main challenges in
accurately mapping physiological cues to emotions is the development
of robust algorithms and machine learning models.

2.3 Visualization of physiological cues
Visualizing physiological cues involves meaningfully representing the
collected data [52] and has been a key aspect of HCI for a long time [33].
Effective visualization techniques can help users understand and inter-
pret the shared physiological cues, thereby enhancing the communi-
cation and social interaction experience [32]. Visualizations of heart-
beats range from realistic, to text/numerical, or screen overlay, and
holographic displays [17, 21, 31]. Portable EEG headsets have been
used to study emotional states and cognitive workloads in VR envi-
ronments [30, 51]. Most EEG-based systems for displaying attention,
cognitive load, and stress, predominantly use pie charts for visualiza-
tion [27]. Prior research has explored different visualization methods,
such as data-driven visualizations, real-time feedback displays, or avatar
animations that reflect physiological states [6, 37, 43]. Our study refer-
ences these existing works to address limitations and gaps in previous
visualization techniques.

2.4 Summary
From this previous research, we can see that the use of virtual avatars
can provide significant benefit for remote collaboration in VR systems.
Embodiment is particularly important for sharing natural communica-
tion cues and creating a sense of empathy. Previous researchers have
explored sharing physiological cues in video conferencing and Social
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Fig. 2. System overview - Hardware implementation on the right side
and software components on the left

VR applications. However, there has been no study of the use of shar-
ing physiological cues for VR training applications. One of the main
benefits of sharing physiological cues is enabling a person to better un-
derstand their partners emotional and cognitive state. Previous research
has shown that this can be achieved through effective visualization
methods, however this has also not been explored in a VR training
application. Thus one of the main research gaps from the related work
is sharing physiological cues in a shared VR training application, and
developing appropriate visualization cues. This is what we address in
this paper.

3 SYSTEM IMPLEMENTATION

Inspired by existing VR collaboration applications, we developed an
open-source and modular remote collaboration system for an engine
assembly training task. In the virtual space, virtual objects, includ-
ing the engine, tools, and surrounding environment, are aligned and
synced, creating a co-located experience for users. To facilitate fast
data exchange, all devices are connected to the same private network.
An overview of the system can be seen in Figure 2.

Hardware Implementation The prototype of the system was built
using the Unity 3D Game Engine4 and executed on two HTC Vive Pro
Eye VR headsets5, which were tethered to two Windows 10 comput-
ers. For physiological measurements, participants wore Shimmer36

sensors to capture their Galvanic Skin Response (GSR) and heart rate.
In the next section we explain how the GSR was used to compute
Low, Medium and High cognitive load. Additionally, Looxid7 add-on
attachments were mounted on the Vive headsets to collect EEG data,
providing attention values of the collaborators. The attention values
were computed by a propriety model that is shipped with Looxid SDK.
The eye tracker from the HTC Vive Pro Eye was used to monitor users’
gaze and measure their attention during the experiment.

System Components The prototype implementation can be di-
vided into three independent components: (1) the Remote Collaboration
System, (2) the Physiological Sensing Manager, and (3) the Virtual
Environment. The Remote Collaboration System facilitates communi-
cation and synchronization between users, allowing them to interact in
the shared virtual space. The Physiological Sensing Manager integrates
and manages the data from the various physiological sensors used in
the system. The Virtual Environment provides a realistic and interactive
setting for the engine assembly task. These components work together
to enable seamless collaboration in the remote training task.

Networking Strategy Networked VR systems aim to share con-
sistent virtual worlds in real-time, and various networking strategies
exist [48, 50, 57]. After considering different platforms and toolk-
its [18, 29, 64], we selected Ubiq [14]. This is an open-source frame-
work that offers core functionalities for social VR, including connection

4https://unity.com/
5https://www.vive.com/nz/product/vive-pro-eye/overview/
6https://shimmersensing.com/product/shimmer3-gsr-unit/
7https://looxidlabs.com/

Fig. 3. Top: Visual representation of physiological signals from partner’s
view. Bottom: Visualization of various states of Cognitive load

management, voice communication, and avatar support. Although Ubiq
supports networked systems over the internet, we created a local server
for optimal bandwidth in our setup.

Physiological Data Integration To integrate multiple physiolog-
ical sensors and ensure synchronous data collection, we developed
helper classes within the framework. Specifically, for this study, we
implemented three streaming units: one for heart rate, one for GSR,
and one for attention. These streaming units capture the physiological
signals from the sensors and enable their visualization within the virtual
environment.

Visual Representation of Cues We used three visual representa-
tions of physiological cues: a dynamic, animated heart icon displaying
the heart rate alongside it; a brain representation with three levels in-
dicating low, medium, and high cognitive load; and a moving circle
indicating attention levels. We used a method similar to Dey et al [11]
for visualizing heart rate. To represent attention allocation, we adopted
the visual approach provided by Looxid in their Unity package [24].
Different levels of cognitive load were depicted using color-coded indi-
cators, resembling a traffic light system [62]. In addition, we explored
the use of animated avatars or characters to visually convey distinct
cognitive states. These visual representations offer an intuitive and
engaging means of communicating cognitive load levels [2]. Figure 3
illustrates the visual representation of physiological signals from the
partner’s perspective and displays various states of cognitive load.

Data Streaming Tools We created a standalone application to
gather data from the Shimmer3 sensor and Looxid EEG device. This
collected data from the Shimmer3 sensor via Bluetooth and streamed
it to Unity through the Lab Streaming Layer (LSL). We also adapted
the Looxid Link Unity plugin, making it compatible with OpenXR.

767

Authorized licensed use limited to: Keio University. Downloaded on December 25,2024 at 09:32:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. We created a standalone application to collect data from the
shimmer3 sensor via Bluetooth and stream the data to unity through
LSL [28]. On the right side, the Looxid link unity plugin adapted to work
with OpenXR to collect the attention data from EEG.

This modified plugin allowed us to collect attention data from the EEG
device (see Figure 4).

Virtual Environment To improve the collaborative experience,
we created a virtual engine comprising over 50 individual parts that
could be assembled or taken apart. This virtual engine was developed
using playback techniques inspired by Sasikumar et al’s work [44]. To
enhance realism, we designed a replica of a workshop environment,
complete with an engine stand holding the mounted engine. Essential
tools for working on the engine were strategically positioned within the
workshop space. Throughout the study, participants followed instruc-
tional cues and collaborated on the engine, using the tools available in
the virtual environment.

4 SYSTEM EVALUATION

During the user study, we employed shared heart rate alone as the
control condition, without any additional physiological cues. The
comparison condition involved sharing heart rate along with the other
physiological cues. Here, our main independent variable was the type of
physiological cues shared among collaborators, leading to four distinct
collaborative conditions:

• (A1) Heart rate (Base Condition)

• (A2) HR + Cognitive Load

• (A3) HR + Attention

• (A4) All (Heart rate + Cognitive load + Attention)

In our user study, we aimed to investigate the following questions:
1) How does sharing physiological cues (along with HR) among remote
users affect collaboration in a VR remote collaboration interface? 2)
What benefits does integrating cognitive load and attention with heart
rate offer for VR remote collaboration compared to using each cue
separately? Our hypotheses are as follows:

• H1 - Viewing physiological cues improves the performance of the
remote collaboration system.

• H2 - Viewing physiological cues enhances the sense of co-
presence within the remote collaboration system.

4.1 Experiment Procedure
At the beginning of the experiment, participants provided informed
consent, completed a demographic questionnaire, and provided details
on their experience with virtual and augmented reality. Next, they
received brief training on navigating the virtual space and completing
the tasks before wearing the VR headset and the Shimmer sensor.

Before commencing the experiment, participants were instructed
to fixate on a black screen for one minute and perform one-back and
two-back N-back tests. The n-back test is a cognitive task that measures
working memory and attention [26], and so this exercise measures the
mean values of low, medium, and high cognitive load. In this test,
participants are presented with letter stimuli, and they must indicate
whether the current stimulus matches the one that appeared n positions

Fig. 5. Tasks, clockwise from top, the engine assembly before opera-
tion. b) instruction on which part to remove. C) the corresponding part
removed. d) Engine with components taken apart.

back in the sequence. The difficulty level can be adjusted by changing
the value of n, with higher values requiring more working memory
capacity and attention. To assess the minimum and maximum GSR
values during three user states (fixating on a blank screen, performing
one-back tasks, and performing two-back tasks), we established thresh-
olds for low, medium, and high cognitive loads corresponding to these
states.

During the study, we continuously categorized the current GSR
value, which represents the average of the past 10 seconds, into one of
three cognitive load levels: low, medium, or high. This categorization
is based on predefined thresholds(from n-back). Our approach draws
inspiration from research suggesting that GSR is a reliable indicator of
cognitive load [38, 47]. To compute the attention, we used Looxid’s
commercially available toolkit. However, due to uncertainties regarding
its accuracy, we have acknowledged this as a limitation in the limitations
section of our study.

Previous research has indicated that balancing assembly tasks by
categorizing them and ensuring equal representation from each category
leads to task equilibrium [45]. Following this approach, we randomly
selected 12 tasks (four easy, four medium, and four hard) from a pool
of possible engine assembly tasks (see table 1) for each condition. This
task was selected as it is manageable and focuses only on identifying
two key elements: the tool and the specific part of the engine to work
on. It also holds real-world relevance which would make it likely to
be an enjoyable experience for the participants. After completing each
condition, participants removed the VR display and filled out subjective
questionnaires. After going through all the conditions, participants
ranked them and provided overall feedback.

4.2 Measurements
We used a within-subject design between four trials of different cue
conditions. For each pair of participants, one person provided the other
with the task information for half the tasks and then swapped roles. To
prevent a scenario where a participant performs two easy tasks as the
task giver and then switches to two easy tasks as the task receiver, the
system ensures that the same difficulty range is maintained when roles
are swapped. This aims to maintain consistency in the task difficulty
participants experienced throughout the experiment. We chose this
design because it reduced the time for the study, participants would feel
less tired or bored, and it alleviated the learning effect.

We collected both objective and subjective measures. The task
completion time was recorded in a system log file to measure perfor-
mance objectively. After each trial, participants were asked to complete
subjective questionnaires to measure their perceived cognitive load,
task difficulty (NASA TLX [20]), and sense of presence in the vir-
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Task Tool Difficulty
Remove flywheel bolts Drill Easy
Remove flywheel Hammer Easy
Remove oil pan bolts Socket Wrench Medium
Remove Oil pan Pry bar Easy
Remove crank case File Medium
Remove bearings Socket Wrench Medium
Remove Crankshaft Toque Wrench Medium
Remove Valves Pliers Easy
Remove Pistons Spanner Hard
Remove rear plate Pry bar Hard
Remove balancer Spanner Hard
Remove Crankshaft
bearing

Torque Wrench Hard

Table 1. Tasks that are performed on the virtual engine, tools required to
perform the task, and difficulty level

tual environment (NMM Social Presence Questionnaire [19]). These
were chosen to provide a more comprehensive and multi-faceted under-
standing of participant experience and task performance. In addition,
participants were interviewed at the end of the experiment using open-
ended questions to obtain their subjective evaluation of their experience
and provided a ranking of the conditions in terms of their preferred
physiological cues.

4.3 Participants
We recruited 28 participants (19 male, 9 female) in 14 pairs from the
local campus community, ranging in age from 20 to 47 years old (M =
29.5, SD = 6.66). Most participant pairs knew each other well. Seven
participants had been using video conferencing daily, Fifteen used it
weekly, and the rest used video conferencing a few times a month. Four
participants used AR or VR applications daily, nine used them once a
month, and the rest used them a few times a year. Three participants
were familiar with AR or VR interfaces, scoring 4 or higher on a 7-point
Likert item (1: novice 7: expert).

5 RESULTS

In this section, we report on the results of the user study regarding
the performance and usability of all communication cue conditions
and summarize the subjective feedback collected from the participants.
The mean difference was significant at the .05 level, and adjustment
for multiple comparisons was automatically made with the Bonferroni
correction unless noted otherwise.

5.1 Task Completion time
The Shapiro-Wilk test indicated that all task completion time data of
HeartRate (p = .65), CognitiveLoad (p = .164), Attention (p = .233),
and Combined (p = .078) were normally distributed. Mauchly’s test
(χ2(5) = 14.2231, p = .015) indicated violation of sphericity. So we
ran the Friedman test, and the result (2(3) = 2.168, p = 0.558) showed
no significant difference in the task completion time across the four cue
conditions.

5.2 Subjective Questionnaire - Social Presence
From the NMM Social Presence Questionnaire, we used the sub-scales
Co-Presence (CP), Attention Allocation (AA), and Perceived Message
Understanding (PMU) to evaluate the participant’s social presence
experience (see table 2). The questionnaire has 18 rating items on a
7-point Likert scale (1: strongly disagree–7: strongly agree). Friedman
tests, and Kendall’s W tests showed significant differences in CP(χ2(3)
= 11.225, p < 0.011) and AA(χ2(3) = 74.3375, p < 0.001), but not for
PMU(χ2(3) = 6.328, p < 0.097).

A post hoc analysis with the Wilcoxon signed-rank test for CP
showed significant pairwise differences for A2-A1 (Z = -2.175, p =
0.030), A2-A3 (Z = -2.862, p = 0.004), A2-A4 (Z = -2.712, p <
0.009). Similarly, AA showed significant difference between A1-A2
(Z = 6.364, p < 0.001), A1-A4 (Z = 6.465, p < 0.001), A2-A3 (Z =

Fig. 6. Individual components of NASA TLX

Fig. 7. NASA TLX

3.640, p < 0.001) and A3-A4 (Z = 4.834, p < 0.001). This shows that
the combined condition (A4) induced the highest sense of co-presence
(Mean = 6.589, SD = 0.736) while heart rate alone (A1) induced the
highest perceived message understanding (Mean = 5.988, SD = 0.991)
among the conditions.

5.3 Subjective Questionnaire - Work Load
To compare the participant’s mental and physical workload in each con-
dition, we used the NASA Task Load Index Questionnaire (TLX) [20],
which consists of six scales (mental demand, physical demand, tem-
poral demand, performance, effort, and frustration) within a 100-point
range with 5 point steps (0: very low 100: very high, the lower, the
better). These six scales can be considered as dependent variables,
and the task or activity being assessed as the independent variable. A
MANOVA method showed no significant difference in workload be-
tween the communication cues conditions. Following this, we analyzed
the mean values of each component of the NASA TLX. Our findings
suggest that the study participants experienced a reduced perceived
workload and reported an improvement in their sense of performance.
We examined the NASA TLX’s mean scores to gain further insight into
these results, as illustrated in figure 6.

5.4 User Preference
At the end of all trials, we also asked participants to rank the four visual
conditions in terms of their preference for the remote collaboration task.
Overall, participants mostly preferred the attention cues (A3) (15 out
of 28) as their first choice, followed by Combined, Cognitive load, and
Heart Rate cues in sequence (Figure 8). Eight participants stated that
the presence of the attention bar allowed them to assess whether or
not the other person was comprehending the conversation. Four users

769

Authorized licensed use limited to: Keio University. Downloaded on December 25,2024 at 09:32:21 UTC from IEEE Xplore.  Restrictions apply. 



Co-presence Attention Allocation PMU
Mean Stdev Mean Stdev Mean Stdev

HR 6.565 0.731 4.369 2.00 5.988 0.990
HR + AT 6.395 0.943 5.75 1.413 5.75 1.251
HR + CL 6.583 0.729 4.482 2.223 5.826 1.21

HR+AT+CL 6.589 0.736 5.720 1.339 5.952 1.202
Table 2. Social Presence sub-scales

Fig. 8. User preference based ranking results (Rank1 is the most pre-
ferred, *: statistically significant).

considered physiological cues redundant or distracting since they felt
the instructions and the audio-visual communications were sufficient
for most tasks. A Friedman test (2(3)= 26.229, p ¡ .001) showed there
was a significant difference in the ranking results between the four cue
conditions. We ran a Wilcoxon Signed-rank test, finding a significant
differences between all cue pairs except Combined and Attention(Z
= -0.945, p = .345). This shows that Attention cues were ranked and
preferred in our tasks (by more than 50% of the participants).

5.5 Attention in Virtual Environment
We employed the use of eye gaze tracking to log and record the visual
attention of participants. This allowed us to identify and document
the specific objects or stimuli participants directed their gaze towards.
Our findings indicate that most participants exhibited minimal attention
towards physiological cues displayed by their partners, with the user’s
gaze directed towards such cues for less than 10% of the duration of the
study. Figure 9 shows the percentage of time spent by the participant
looking at the physiological cues of their partner.

This may be attributed to a phenomenon known as “habituation,”
in which the initial novelty of observing physiological cues displayed
by one’s partner diminishes over time [42]. We found that around
70% of the time spent examining the physiological cues occurred in
the first minute of the observation, supporting the idea of habituation.
After this time, participants may have become increasingly focused
on completing the tasks at hand rather than directing attention toward
these cues. In addition, the results may also be influenced by the
nature of the tasks assigned, which may have required a higher degree
of attentional demands, thus diminishing the allocation of attention
towards physiological cues.

6 DISCUSSION

We asked open-ended questions like - “What the reasons are for their
choice and the drawback and benefits of each system” to the participants
upon completion of the study. One participant commented, “I would
rather see everything first, then I can choose which is important for
each task. Cognitive load tells me if my partner needs help... Heartrate
tells me if my partner is excited... Attention tells me if he is focused.”
Most other participants shared this sentiment. Another participant com-
mented, “The attention cue was the easiest to follow due to the dynamic
nature of the representation. The constantly moving display attracted
attention.” This suggests that the dynamic nature of the attention cue

Fig. 9. The proportion of time spent by the participant focusing on the
physiological cues displayed by their partner.

played a key role in making it more engaging. A few participants also
found it difficult to make accurate judgments of emotional states from
the physiological cues and would prefer the system to do that for them.
Additionally, some participants commented that processing too much
information was challenging.

After conducting post hoc analysis, we found that the attention cue
induced significantly higher copresence levels than the other conditions.
This finding is supported by the open-ended questions, where partici-
pants expressed interest in the dynamic nature of the visualization and
how the attention cue conveyed their partner’s focus state. One partic-
ipant stated,“The attention cue’s ability to create a feeling of higher
copresence in the collaborative environment is amazing. I felt more
connected to my partner and it helped us work better together.” It is
possible that the attention cue’s ability to create a feeling of higher
copresence in the collaborative environment is due to these factors.

We did not observe a significant difference between the visual cues
regarding mental and physical effort. However, the figures show that the
mental and physical demands, effort, and frustration were generally low.
Additionally, participants rated their performance higher, indicating
that they had a generally pleasant experience overall. One participant
commented, “The cues didn’t require much mental or physical effort,
which allowed me to focus on the task at hand. It made the collaboration
process smooth and enjoyable.” These positive experiences further
highlight the effectiveness of the cues in facilitating collaboration and
enhancing the participants’ satisfaction with their performance in the
study.

In addressing our research questions, our findings shows that sharing
physiological cues led to an enhanced collaborative experience by
enhancing the sense of co-presence. However, our study could not
find advantages in integrating heart rate, attention, and cognitive load
simultaneously, compared to employing them individually. In addiiton
, we did not observe any performance improvements in collaboration
resulting from the shared physiological cues.

7 DESIGN IMPLICATIONS

The present study provides several design implications for future remote
collaboration VR systems that incorporate the sharing of physiological
cues. This includes showcasing the importance of developing effective
methods for interpreting physiological information. Our study found
that many participants struggled to interpret the physiological signals
of their partners. A lot of design work can be done on effectively
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representing physiological cues in virtual environments. Our study
presented only a few visual cues, but future studies could explore
different types of visualizations and their impact on user experience
and performance. Training users to interpret physiological cues could
also enhance their understanding and use of these cues in collaborative
virtual environments. This would be especially important if such cues
are to be used in real-world applications, where the accuracy and
interpretation of the cues can have significant consequences.

Importance of Measuring and Visualizing Attention The study
emphasizes the significance of measuring and visualizing attention in
remote collaboration systems that incorporate the sharing of physio-
logical cues. The participants in the study expressed a preference for
being able to see the attention cues of their partners. This suggests that
having access to information about the attention state of collaborators
can enhance communication and coordination in virtual environments.
By measuring and visualizing attention, remote collaborators can better
understand each other’s focus and engagement levels, leading to more
effective collaboration. Designers of future systems should prioritize
the development of accurate and intuitive methods for capturing and
representing attention cues.

Dynamic Radial Visualization of Physiology is Preferred The
study found that users preferred a dynamic way of visual representation
for physiological cues. Specifically, a radial visualization was favored
by the participants. This type of visualization could involve a circular
display where different aspects of physiological information, such as
cognitive load or emotional state, are represented by changing colors,
patterns, or filling levels. The dynamic nature of this visualization al-
lows for real-time updates and provides users with a clear and visually
appealing representation of their partners’ physiological cues. Future
studies should explore different variations of dynamic radial visualiza-
tions to determine their impact on user experience and performance in
collaborative virtual environments.

Avatar Should Represent the Emotional State In the study,
the representation of cognitive load was depicted using a brain icon
that filled up and turned red when the user experienced high cognitive
load. However, some participants suggested an alternative approach,
where the avatar’s skin tone would change instead of using a brain icon.
This change in skin tone would intuitively convey the user’s cognitive
load status without the need for participants to constantly look around
their partners. This feedback highlights the importance of designing
avatars that can accurately represent the emotional states of users. By
incorporating such representations, remote collaborators can have a
better understanding of each other’s cognitive and emotional states,
leading to improved communication and collaboration.

Overall, the study underscores the need for effective methods of
interpreting and representing physiological cues in remote collaboration
systems. Designers should focus on developing intuitive visualizations,
such as dynamic radial displays, and explore alternative modalities,
like auditory cues or haptic feedback, for conveying physiological
information when visual cues are not feasible. Additionally, future
research should investigate how these findings could be generalized to
different domains and tasks to ensure the applicability of physiological
cues in a wide range of collaborative virtual environments.

8 LIMITATIONS

This study has several limitations that should be acknowledged: One of
them is that the use of generic avatars for representation in the collab-
orative environment has not been studied in terms of its effect on the
overall experience. In our experimental setup, we employed the use of
avatar representations to visually depict the partner in the collaborative
context. The chosen representation was gender-neutral and generic in
nature to eliminate any potential influence on the participants’ behavior.
The hands of the avatar models were animated to mimic the movements
of grasping and holding, which could further enhance the sense of
copresence. However, it is important to note that using more realistic
avatars or volumetric representations may increase the participants’
sense of co-presence further [44].

Another limitation of our study is that we presented heart rate infor-
mation in all conditions, which may have allowed participants to infer
stress or emotional state from this cue alone. As a result, participants
may not have relied as heavily on attention or cognitive load cues. This
could have influenced the results and may need to be addressed in
future studies by varying the cues presented in different conditions.

The type of tasks used in this study could also influence the findings.
They were not particularly challenging and quite engaging for some
participants, leading to a focus on completing the task rather than in-
terpreting and utilizing physiological information to collaborate with
their partner. While conducting a pilot study with the system, we found
that participants could complete the tasks faster when eye gaze was
shared. However, in the main user study, this feature was not provided
to encourage participants to interpret the physiological cues of their
partner. Also, we used a physical activity, where knowing the partner’s
emotional state or cognitive load may not be as important as in a nego-
tiation or decision-making task. In such tasks, the partner’s emotional
state may be more relevant to the interaction, and thus the importance
of the physiological cues could be more pronounced. Therefore, future
studies should consider the task and context of the interaction when
examining the impact of physiological cues in virtual environments.

The Looxid Link is engineered to monitor and interpret a range of
cognitive and emotional states. However, it does not provide specific
details about the variable delay and epoch size used in its calculations.
To assess cognitive load, the system averages data over a 10-second
epoch. This approach results in a delayed representation of the user’s
emotional cues. In contrast, heart rate data is presented in real-time.
This discrepancy between the immediate display of heart rate infor-
mation and the delayed processing of cognitive load data represents a
limitation of the system. In essence, while the device effectively tracks
and analyzes cognitive states, there is an inherent delay in reflecting
these states, in contrast to the instantaneous display of physiological
data like heart rate.

A final limitation of our study is that we did not analyze conversa-
tional patterns or user behavior, which could have provided insights into
how the conversation changed in response to perceived physiological
cues. In addition, studying the effect of instruction delivery could have
been interesting to explore. Future studies could include these aspects
to enhance further our understanding of physiological cues’ impact on
collaborative virtual environments.

9 CONCLUSION

We describe a novel collaborative system designed to enhance the
experience of remote participants engaged in VR assembly tasks. The
system’s main objective was to facilitate the sharing of physiological
cues among users, specifically focusing on metrics such as heart rate,
cognitive load, and attention. By enabling participants to share these
cues, we aimed to provide a more immersive and connected experience
akin to being physically present in the same environment.

We conducted an experiment to evaluate the effectiveness of our pro-
posed system. The findings revealed that while users had the capability
to share their physiological cues, they only allocated a limited amount
of time and attention to actively observing and interpreting these cues.
Despite this, participants reported an overall positive perception of their
performance in the assembly tasks. One significant observation was
the impact of co-presence on the sharing of attention. We observed that
participants preferred sharing attention, indicating that they valued the
ability to direct each other’s focus within the VR environment.

In the future, we plan to investigate further methods to optimize the
presentation and interpretation of shared physiological cues to enhance
user engagement and attention. We would also like to explore the
potential integration of machine learning algorithms to automatically
detect and respond to changes in users’ physiological states, improving
the overall collaborative experience in VR assembly tasks.
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